基于实时生产数据的油井工况诊断系统  被引量:5

Oil Well Working Condition Diagnosis System Based On Real-time Production Data

在线阅读下载全文

作  者:袁瑛 张乃禄[1,2] Yuan Ying;Zhang Nailu(College of Electronic Engineering,Xi'an Shiyou University,Xi'an,Shaanxi 710065,China;Key Laboratory of Shaanxi Province for Oil and Gas Well Logging and Control Technology,Xi'an,Shaanxi 710065,China)

机构地区:[1]西安石油大学电子工程学院,陕西西安710065 [2]陕西省油气井测控技术重点实验室,陕西西安710065

出  处:《石油工业技术监督》2021年第5期44-48,共5页Technology Supervision in Petroleum Industry

摘  要:针对目前油井井下工况诊断效率低下的问题,提出了基于实时生产数据的油井工况诊断系统,采用物联网架构实现三相电参、套管压力、示功图和油井动液面等实时生产数据的采集、传输与应用,利用灰度提取方法提取示功图图像型数据的特征值,与数值型数据融合分析,增加BP神经网络的输入神经元,建立工况诊断模型。对比于通过示功图提取特征值的诊断方法,油井工况诊断系统可以大幅度提高油井工况诊断的准确性,对于实现远程智慧化油田发展具有重要意义。Aiming at the problem of low efficiency of oil well condition diagnosis,an oil well condition diagnosis system based on realtime production data is proposed.The real-time production data such as three-phase electrical parameters,casing pressure,indicator diagram and the dynamic liquid level of oil well are collected,transmitted and applied by Internet of things.The feature values of the image data of the indicator diagram are extracted by gray extraction method,and the data fusion analysis of the feature values with the numerical data of the indicator diagram is carried out,and the oil well condition diagnosis model is establish by increasing the input neurons of BP neural network.Compared with the diagnosis method of extracting eigenvalues from indicator diagram,this method can greatly improve the accuracy of oil well condition diagnosis,which is of great significance for the realization of remote intelligent oil⁃field.

关 键 词:油井工况 诊断系统 BP神经网络 实时数据 物联网 

分 类 号:TE938[石油与天然气工程—石油机械设备]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象