基于ARMA模型船摇预报的船用稳定平台PID控制算法研究  被引量:2

A Study on PID Control Algorithm of Shipborne Stabilized Platform Based on ARMA Model Ship Rocking Forecast

在线阅读下载全文

作  者:张凯临[1] 李玉超 Zhang Kailin;Li Yuchao(College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China)

机构地区:[1]中国海洋大学信息科学与工程学院,山东青岛266100

出  处:《中国海洋大学学报(自然科学版)》2021年第7期115-121,共7页Periodical of Ocean University of China

基  金:国家重点研究发展计划项目(2019YFC1408002)资助。

摘  要:传统船用稳定平台的PID控制器在闭环调节过程中存在固有的时滞,这会导致稳定平台的稳定精度无法进一步提高,针对此问题提出采用ARMA模型对船的姿态进行预测,经过处理后得到下一时刻稳定平台将要产生的误差,并将此误差作为输入施加到PID控制器中,以实现事先调节,最终达到提高稳定平台的稳定精度的目的。在ARMA模型中,采用最小二乘法对模型的参数进行实时估计,并提出使用预测值的均方误差最小的原则确定模型阶数和单次预测所使用样本数。试验结果表明,ARMA模型的预测结果具有较高的准确度,相对于传统PID控制器而言改进后的PID控制器一定程度上提高了船用稳定平台的稳定精度。The PID controller of the traditional shipborne stabilized platform has inherent time lag in the closed-loop adjustment process,which will lead to the stability accuracy of the stabilized platform can not be further improved.For this reason,the ARMA model is proposed to predict the attitude of ship.The error which emerges in next step on stabilized platform is available after processing,and then exert it on PID controller as input.It makes the prior adjustment come true and the purpose of improving the stability accuracy of the stabilized platform is achieved finally.And in the ARMA model,the least square method is used to estimate the parameters of the model in real time,and the principle of using the minimum mean square error of the predicted value is proposed to determine the model orders and the number of samples used in a single prediction.The experimental results show that the prediction results of the ARMA model have high accuracy,and the modified PID controller improves the stability accuracy of the shipborne stabilized platform compared with the traditional PID controller to some extent.

关 键 词:ARMA模型 船摇预报 稳定平台 PID控制器 均方误差 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象