酶促反应动力学教学刍议:米氏方程衍生公式与图像  被引量:9

Discussion on Teaching Enzyme Kinetics:Plots of Michaelis-Menten Equation Derivatives and Their Figures

在线阅读下载全文

作  者:王志鹏 车子良 马新雨 Farica Zhuang 蒋振雄 尹晟 王鹏[9] WANG Zhipeng A;CHE Zi-Liang;MA Xin-Yu;ZHUANG Farica;JIANG Zhen-Xiong;YIN Sheng;WANG Peng(Department of Chemistry,Texas A&M University,College Station,Texas 77840,USA;Division of Genetics,Department of Medicine,Brigham and Women’s Hospital,Department of Biological Chemistry and Molecular Pharmacology,Harvard Medical School,Boston,MA 02115,USA;Department of Mathematics,Harvard University,MA 02138,USA;Citadel Securities,LLC:131 South Dearborn St.Chicago Illinois 60603,USA;Department of Computer Science,Duke University,Durham,NC 27708,USA;Department of Biology,Texas A&M University,Texas 77840,USA;Duke Center for Genomic and Computational Biology,Duke University,Durbam,NC 27708,USA;Nutrition/Metabolism Laboratory,Department of Surgery,Beth Israel Deaconess Medical Center,Harvard Medical School,Boston,MA 02138,USA;Department of Burn Surgery,First Affiliated Hospital of Sun Yat-Sen University,Guangzhou 510080,China)

机构地区:[1]Department of Chemistry,Texas A&M University,College Station,Texas 77840,USA [2]Division of Genetics,Department of Medicine,Brigham and Women’s Hospital,Department of Biological Chemistry and Molecular Pharmacology,Harvard Medical School,Boston,MA 02115,USA [3]Department of Mathematics,Harvard University,MA 02138,USA [4]Citadel Securities,LLC:131 South Dearborn St.Chicago Illinois 60603,USA [5]Department of Computer Science,Duke University,Durham,NC 27708,USA [6]Department of Biology,Texas A&M University,Texas 77840,USA [7]Duke Center for Genomic and Computational Biology,Duke University,Durbam,NC 27708,USA [8]Nutrition/Metabolism Laboratory,Department of Surgery,Beth Israel Deaconess Medical Center,Harvard Medical School,Boston,MA 02138,USA [9]中山大学附属第一医院烧伤外科,广州510080

出  处:《化学教育(中英文)》2021年第8期105-110,共6页Chinese Journal of Chemical Education

摘  要:许多国内外高校的本科教学缺乏对米氏方程的深入推衍,这对学生了解酶促反应的动态过程及在实际科研工作中的应用是极为不利的。从酶促反应方程出发对米氏方程进行推导,继之采用双倒数法、单倒数法、直接隐函数法、间接隐函数法以及积分法对米氏方程进行线性化,得到适用于不同情况的衍生方程。从数学和酶学角度出发指出了不同方程的优势和缺点,并针对其缺陷提出了若干解决方案以及在实际应用过程中的注意事项。希对高校中有志于科研事业的相关专业的教师学生有所助益。The derivation of the Michaelis-Menten equation is crucial in understanding enzyme kinetics and how the equation applies in scientific research.However,the college curriculums in many domestic and overseas institution lack the theoretical underpinnings on the derivation of the Michaelis-Menten equation.This manuscript presents a comprehensive review of the derivation of the Michaelis-Menten equation from the general equation for an enzymatic reaction,covering methods such as:the inverse method,the single reciprocal method,the direct implicit function method,the indirect response method,and the integration method to linearize the Michaelis-Menten equation.Furthermore,this manuscript discusses the application of derivatives to various scientific research situations,as well as the advantages and disadvantages of different derivatives from mathematical and enzymological perspectives.Finally,this manuscript proposes several solutions to the limitations and precautions in practical applications.We hope this topic will be resourceful to both instructors and students who are interested in scientific research in relevant field.

关 键 词:米氏方程 米氏常数 酶动力学 线性化 

分 类 号:G642[文化科学—高等教育学] O643.1-4[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象