检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:师紧想 SHI Jinxiang(School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240)
机构地区:[1]上海交通大学电子信息与电气工程学院,上海200240
出 处:《现代计算机》2021年第10期24-28,共5页Modern Computer
摘 要:存算一体加速器因其高能效和低功耗的特点受到广泛关注,但在神经网络模型与存算一体加速平台之间缺乏高效的自动化映射工具。为了改善这一局面,本文提供一个面向忆阻器存算一体加速平台的自动代码生成软件栈,以将训练后的神经网络模型映射在存算一体加速器上。为了提高映射的效率,本文借助Halide调度卷积算子的循环空间,并设计优化连续内存访问、优化忆阻器阵列权重更新次数等优化策略。相比与默认映射方案,本文在典型卷积层中权重更新次数减少85%~96%。In-memory computing accelerators get a lot of attention for their energy efficiency and low power consumption.However,there is a lack of an efficient automated mapping tool between neural network models and the In-memory computing accelerator.To improve this situation,this paper provides an automated code generation tool for In-memory computing acceleration,which can map the trained neural network model to the in-memory computing backend.In order to improve the efficiency of the mapping,this paper uses Halide to schedule the loop space of the convolution operators,and designs optimization strategies such as optimizing the continuous memory accesses and optimizing the number of updates of the crossbar array weights.Compared with the default mapping scheme,this paper reduces the number of weight updates in a typical network convolutional layer by 85%to 96%.
分 类 号:TN60[电子电信—电路与系统] TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222