检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谭笑枫 李夕海 刘继昊 李广帅 于晓彤 TAN Xiaofeng;LI Xihai;LIU Jihao;LI Guangshuai;YU Xiaotong(Rocket Force University of Engineering,Xi’an 710025,China)
机构地区:[1]火箭军工程大学,西安710025
出 处:《应用声学》2021年第3期457-467,共11页Journal of Applied Acoustics
基 金:国家自然科学基金项目(41774156,41374154)。
摘 要:次声事件的分类识别方法应用广泛,传统分类方法在很多方面进行了尝试,但由于次声信号具备非线性的特点,致使分类难度较大,分类精度不高,这对次声事件的分类工作提出了挑战。针对次声事件中的化学爆炸与天然地震信号分类问题,文章构建了一种改进的深度卷积神经网络分类模型用于实现两类次声信号的分类。论文采用“全面禁止核试验条约组织”官网上收集到的化学爆炸和天然地震次声信号进行数据集的构建,使用改进的深度卷积神经网络分别与BP网络和一维LeNet-5网络进行对比分析。实验结果表明,论文的测试识别率能够达到82.72%,较上述算法有优势。The classification and recognition methods of infrasound events have been widely used,and the traditional classification methods have been tried in many aspects,but because of the nonlinear characteristics of infrasound signals,the classification is difficult and the classification accuracy is not high,which poses a challenge to the classification of infrasound events.Aiming at the problem of chemical explosion and natural earthquake signal classification in infrasound events,an improved deep convolutional neural network classification model is built to realize the classification of two kinds of infrasound signals.In this paper,the chemical explosion and natural earthquake infrasound signals collected on the official website of the Comprehensive Nuclear-Test-Ban Treaty Organization(CTBTO)are used to construct the data set,and the improved deep convolutional neural network is used for comparative analysis with BP network,one-dimensional Lenet-5 network.The experimental results show that the test paper recognition rate can reach 82.72%,which is superior to the above algorithm.
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28