A credit risk assessment model based on SVM for small and medium enterprises in supply chain finance  被引量:23

在线阅读下载全文

作  者:Lang Zhang Haiqing Hu Dan Zhang 

机构地区:[1]School of Economics and Administration,Xi’an University of Technology,Shaanxi 710054,China

出  处:《Financial Innovation》2015年第1期208-228,共21页金融创新(英文)

基  金:sponsored by NSFC project(71372173、70972053);National Soft Science Research Project(2014GXS4D153);Specialized Research Fund of Ministry of Education for the Doctoral Project(20126118110017);Shaanxi Soft Science Research Project(2012KRZ13、2014KRM28-2、2013KRM08、2011KRM16);Shaanxi Social Science Funds projects(12D231,13D217);Xi’an Soft Science Research Program(SF1225-2);Shaanxi Department of Education Research Project(11JK0175);Shaanxi Department of Education Research Project(15JK1547);XAUT Teachers Scientific Research Foundation(107-211414).

摘  要:Background:Supply chain finance(SCF)is a series of financial solutions provided by financial institutions to suppliers and customers facing demands on their working capital.As a systematic arrangement,SCF utilizes the authenticity of the trade between(SMEs)and their“counterparties”,which are usually the leading enterprises in their supply chains.Because in these arrangements the leading enterprises are the guarantors for the SMEs,the credit levels of such counterparties are becoming important factors of concern to financial institutions’risk management(i.e.,commercial banks offering SCF services).Thus,these institutions need to assess the credit risks of the SMEs from a view of the supply chain,rather than only assessing an SME’s repayment ability.The aim of this paper is to research credit risk assessment models for SCF.Methods:We establish an index system for credit risk assessment,adopting a view of the supply chain that considers the leading enterprise’s credit status and the relationships developed in the supply chain.Furthermore,We conducted two credit risk assessment models based on support vector machine(SVM)technique and BP neural network respectly.Results:(1)The SCF credit risk assessment index system designed in this paper,which contained supply chain leading enterprise’s credit status and cooperative relationships between SMEs and leading enterprises,can help banks to raise their accuracy on predicting a small and medium enterprise whether default or not.Therefore,more SMEs can obtain loans from banks through SCF.(2)The SCF credit risk assessment model based on SVM is of good generalization ability and robustness,which is more effective than BP neural network assessment model.Hence,Banks can raise the accuracy of credit risk assessment on SMEs by applying the SVM model,which can alleviate credit rationing on SMEs.Conclusions:(1)The SCF credit risk assessment index system can solve the problem of banks incorrectly labeling a creditworthy enterprise as a default enterprise,and thereby improv

关 键 词:SCF SMES Credit risk assessment SVM BP Neural Network Technique 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象