基于深度学习的群养鸡只行为监测方法研究  被引量:14

Research of behavior monitoring method of flock hens based on deep learning

在线阅读下载全文

作  者:李娜[1] 任昊宇 任振辉[1] LI Na;REN Haoyu;REN Zhenhui(College of Mechanical and Electrical Engineering,Hebei Agricultural University,Baoding 071001,China;College of Modern Science&Technology,Hebei Agricultural University,Baoding 071001,China)

机构地区:[1]河北农业大学机电工程学院,河北保定071001 [2]河北农业大学现代科技学院,河北保定071001

出  处:《河北农业大学学报》2021年第2期117-121,共5页Journal of Hebei Agricultural University

基  金:河北省科技计划项目(16236605D-2)。

摘  要:畜禽的行为能够反映其健康状况、环境舒适度等福利信息,是评价畜禽福利状况的重要指标。为了实时自动监测鸡舍中鸡群的行为状况,提出了1种基于深度学习的鸡群行为监测方法。用摄像头连续4个月每天7:00—17:30记录散养鸡群在鸡舍内的活动,筛选7988幅图片对鸡只的采食、站立、趴卧、梳羽、啄羽和打架行为进行标注,利用YOLO v4目标检测模型识别,各行为平均精确率分别为采食96.67%、站立90.34%、趴卧78.46%、梳羽82.01%、啄羽63.38%、打架67.14%,模型总体平均精确率为79.69%。为进一步提高啄羽行为检测结果,采用了时间序列分析方法提取持续时间大于30 s的啄羽行为。实验结果表明,该方法可以实现群养鸡只行为的实时自动监测,解决人工不能全天实时监测的问题,为精准化养殖提供了可能。The behavior of livestock and poultry can reflect their health condition, environmental comfort level and other welfare information, which is an important index to evaluate the welfare status. In order to monitor the behavior of the chickens in the chicken house automatically and in real time, a deep learning method was proposed to monitor the behavior of chickens. The camera recorded chicken activities everyday from 7:00 to 17:30 for four months in the chicken house. Eating, standing, lying, preening, feather pecking and fighting behaviors of chickens were labeled in 7988 images, the average precision(AP) rates were 96.67%, 90.34%, 78.46%, 82.01%, 67.14% and 63.38% respectively, and the mean average precision(mAP) was 79.69%. To improve the feather pecking behavior detection, a method of time series analysis was used, which could extract the feather pecking behavior lasting more than 30 s. The experimental results show that this method can realize real-time automatic monitoring of the behavior of chickens, and solve the problem that human beings cannot monitor the behavior of chickens all day long, which provides the possibility for precision livestock farming.

关 键 词:YOLO v4 鸡只行为识别 时间序列 精准畜牧业 

分 类 号:TP202[自动化与计算机技术—检测技术与自动化装置] S66[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象