检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李社蕾[1,2] 杨博雄 陆娇娇[1,2] LI She-lei;YANG Bo-xiong;LU Jiao-jiao(School of Information&Intelligence Engineering,University of Sanya,Sanya 572022,China;Chen Guoliang Academician Workstation,University of Sanya,Hainan 572022,China)
机构地区:[1]三亚学院信息与智能工程学院,海南三亚572022 [2]三亚学院陈国良院士工作站,海南三亚572022
出 处:《计算机技术与发展》2021年第5期85-89,共5页Computer Technology and Development
基 金:海南省自然科学基金资助项目(619MS076)。
摘 要:卷积神经网络在欧氏数据上取得巨大成功之后,开始在图结构、几何流行等非欧数据上泛化。当前图卷积神经已成为研究热点。在数字图像去噪、压缩、增强、融合以及加密方面傅里叶变换与小波变换是不可或缺的处理手段,在图卷积神经中有卷积定理将傅里叶变换用于实现图上的卷积运算,谱图小波变换也只是实现了卷积的快速算法,都是围绕如何在图结构上做卷积而展开的研究,没有真正发挥其作用,大大限制了图卷积神经网络性能的发挥。该文对谱图傅里叶变换与谱图小波变换基进行分析研究,同时研究基与图结构之间的关系。实验表明通过谱图傅里叶变换和谱图小波变换可以获取图结构的特征信息,为谱图小波变换和谱图傅里叶变换更深入地与图卷积神经网络结合提供了参考。After achieving great success in Euclidean data,convolutional neural network began to generalize on non-Euclidean data such as graph structure and geometric popularity.At present,the graph convolutional nerve has become a research hotspot.In the digital image denoising,compression,enhancement,fusion and encrypted,Fourier transform and wavelet transform are indispensable means of processing.There is a convolution theorem in the graph convolutional nerve to realize the convolution operation on the graph by spectral Fourier transform and fast convolution algorithm by spectral wavelet transform.The study is over how to convolutions on the graph structure,which does not really play its role and greatly limits the performance of the graph convolutional neural network.Therefore,we analyze and study the Fourier transform and wavelet transform basis of spectrogram and also the relationship between the basis and graph structure.The experiment shows that the characteristic information of the graph structure can be obtained by the Fourier transform and wavelet transform of the spectrum,which provides a reference for the deeper combination of the wavelet transform and Fourier transform of the spectrum with the convolutional neural network of the graph.
关 键 词:谱图 小波变换 图卷积神经网络 傅里叶变换 卷积定理 本征函数 拉普拉斯算子
分 类 号:TN911.30-39[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222