检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘畅[1,2] 赵华东 吴优[1,2] LIU Chang;ZHAO Huadong;WU You(School of Mechanical and Power Engineering,Zhengzhou University,Zhengzhou 450001,China;Henan Institute of Intelligent Manufacturing,Zhengzhou 450001,China)
机构地区:[1]郑州大学机械与动力工程学院,郑州450001 [2]河南省智能制造研究院,郑州450001
出 处:《南水北调与水利科技(中英文)》2021年第2期409-416,共8页South-to-North Water Transfers and Water Science & Technology
基 金:工业和信息化部智能制造综合标准化与新模式应用项目(2018037)。
摘 要:针对BP神经网络对水工钢闸门安全等级识别能力差的问题,提出基于信息增益(IG)与自适应花授粉算法(SFPA)的BP神经网络模型。采用IG理论对水工钢闸门安全等级评价中的特征进行精简,降低冗余特征的影响,缩短网络模型的训练时间;利用SFPA优化BP神经网络初始权重及阈值,提高网络模型的收敛速度,防止其陷入局部最优,提高网络模型对水工钢闸门安全等级的分类能力。根据IG-SFPA-BP、标准BP、IG-BP、IG-FPA-BP、IGPSO-BP及IG-GA-BP等神经网络模型在水工钢闸门安全等级数据集上进行多次独立运行的试验结果,从识别正确率、运行时间及模型均方误差等多个角度验证了IG-SFPA-BP网络模型对水工钢闸门安全等级识别的适用性。IG-SFPA-BP网络模型提高了神经网络模型在水工钢闸门安全评价领域的实用价值,也为类似工程提供新的模型参考。To prevent accidents caused by the hidden danger of hydraulic steel gates and to avoid the waste of manpower and material resources in overhaul and maintenance process,it is necessary to evaluate the safety grade of the hydraulic steel gate.At present,there are many models for the safety grade evaluation of hydraulic steel gates at home and abroad,but most of them are only applicable to the traditional periodic inspection,while few models for online safety grade evaluation system.The hydraulic steel gate safety ratings can be abstracted as a pattern recognition problem,and the BP neural network is widely used in various fields of pattern recognition because of the strong learning ability,ability to adapt,and fault tolerance.Thus BP neural network can be constructed for the security level of hydraulic steel gate recognition model.Therefore,exploring the neural network for the safety of hydraulic steel gate online evaluation system is feasible.There are too many evaluation indexes of the traditional hydraulic steel gate safety grade,which leads to the redundancy of the input feature vector dimension.Moreover,if the initial value of the BP neural network is not good,it is easy to cause the training result to fall into the local optimal.So,the accuracy of BP neural network for the identification of the safety grade of hydraulic steel gates is not ideal.Since the information gain(IG)can achieve the quantification of the safety level of hydraulic steel gate and the correlation between each feature.The self-adaptive flower pollination algorithm(SFPA)has a strong global search ability and a local search ability and can realize the optimization of the initial value of BP neural network.Given this,an IG-SPAF-BP neural network model is proposed.According to the change of entropy,the information gain of each hydraulic steel gate safety grade feature is calculated,and the features carrying more information are selected as the input features of the neural network to reduce the training time of the neural network and improve th
关 键 词:水工钢闸门 信息增益(IG) 自适应花授粉算法(SFPA) BP神经网络 安全评价
分 类 号:Tv663[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222