检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁霜霜 聂麟飞[1] 胡琳[1] LIANG Shuangshuang;NIE Linfei;HU Lin(College of Mathematics and System Science,Xinjiang University,Urumqi 830046,China)
机构地区:[1]新疆大学数学与系统科学学院,乌鲁木齐830046
出 处:《华东师范大学学报(自然科学版)》2021年第3期47-55,共9页Journal of East China Normal University(Natural Science)
基 金:国家自然科学基金(1961066,11771373);新疆维吾尔自治区高校科研计划(XJEDU2018I001)。
摘 要:考虑到病毒变异和感染年龄的普遍存在性,提出了一类具有潜伏年龄和水平传播的媒介-宿主传染病模型,给出了基本再生数R_(0)的精确表达式,刻画了该模型无病平衡态和地方病平衡态的存在性.进一步,利用线性近似方法和构造合适的Lyapunov函数及LaSalle不变原理等方法,证明了当R_(0)<1时,无病平衡态E0是全局渐近稳定的,疾病也最终趋于灭绝;而当R_(0)>1时,地方病平衡态是全局渐近稳定的,疾病将持续下去而形成地方病.Considering the prevalence of variations in virus strains and the age of infection,a vector-borne infectious disease model with latent age and horizontal transmission is proposed.An exact expression for the basic reproduction number,R_(0),is given,which characterizes the existence of the disease-free equilibrium and the endemic equilibrium for this model.Next,by using a combination of linear approximation methods,constructing suitable Lyapunov functions,LaSalle invariance principles,and other methods,we prove that if R_(0)<1,then the disease-free equilibrium has global asymptotic stability,and the disease will eventually become extinct;if R_(0)>1,then the endemic equilibrium is globally asymptotically stable,and the disease will continue to form an endemic disease.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28