检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周钦坤 岳建平[1] 李乐乐 杨恒 ZHOU Qinkun;YUE Jianping;LI Lele;YANG Heng(College of Earth Science and Engineering,Hohai University,8 West-Focheng Road,Nanjing 211100,China;Suzhou Industrial Park Surveying,Mapping and Geoinformation Co Ltd,101 Mid-Suhong Road,Suzhou 215000,China)
机构地区:[1]河海大学地球科学与工程学院,南京市211100 [2]苏州工业园区测绘地理信息有限公司,江苏省苏州市215000
出 处:《大地测量与地球动力学》2021年第6期633-638,共6页Journal of Geodesy and Geodynamics
基 金:国家重点研发计划(2018YFC1508603)。
摘 要:针对现有机载激光雷达(LiDAR)点云高精度提取方法存在建筑物屋顶面提取精度较低、适应性较差等问题,提出一种分步式建筑物屋顶面点云高精度提取方法。该方法通过主成分分析计算点云可靠性指标,选取可靠平面点;然后,利用K-means算法实现可靠点在法向量空间上的聚类,并通过逐步平面估计,提取初始屋顶面片;最后,进行面片的合并与未标记点的归属判断。实验结果表明,本文方法提取结果优异,效率较高,且对不同复杂程度的建筑物屋顶面均能取得较好的提取效果。Aiming at the problems of low accuracy and poor adaptability in extracting building roof using LiDAR point cloud data,we propose a stepwise method for high-precision extraction of building roof point clouds.We calculate the reliability index of the point cloud through principal component analysis,select the reliable plane points,then use the K-means algorithm to realize the clustering of the reliable points in the normal vector space and extract the initial roof patch through stepwise plane estimation.Finally,we process the combination of building roof patches and the attribution judgment of unmarked points.The test results show that the proposed method has excellent extraction results,high extraction efficiency,and can obtain better extraction results for building roofs of different complexity levels.
关 键 词:机载激光雷达 屋顶面 可靠平面点 K-MEANS 逐步平面估计
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222