基于可见/近红外光谱和深度学习的早期鸭胚雌雄信息无损检测  被引量:9

Non-Destructive Detection of Male and Female Information of Early Duck Embryos Based on Visible/Near Infrared Spectroscopy and Deep Learning

在线阅读下载全文

作  者:李庆旭 王巧华[1,2] 马美湖 肖仕杰 施行 LI Qing-xu;WANG Qiao-hua;MA Mei-hu;XIAO Shi-jie;SHI Hang(College of Engineering,Huazhong Agricultural University,Wuhan 430070,China;Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River,Ministry of Agriculture and Rural Agriculture,Wuhan430070,China;National Egg Research and Development Center,Wuhan 430070,China)

机构地区:[1]华中农业大学工学院,湖北武汉430070 [2]农业部长江中下游农业装备重点实验室,湖北武汉430070 [3]国家蛋品加工技术研发中心,湖北武汉430070

出  处:《光谱学与光谱分析》2021年第6期1800-1805,共6页Spectroscopy and Spectral Analysis

基  金:国家自然科学基金项目(31871863);国家科技支撑计划项目(2015BAD19B05);公益性行业(农业)科研专项(201303084)资助。

摘  要:胚蛋雌雄识别一直是家禽业发展的瓶颈问题,在禽肉生产过程中倾向于养殖雄性个体,而禽蛋生产产业倾向于养殖雌性家禽。若能在孵化过程中较早鉴别出种蛋的雌雄,不仅能够降低家禽孵化产业的成本,还能够提高禽蛋和禽肉生产行业的经济效益。该文以种鸭蛋为研究对象,为了在种鸭蛋孵化早期实现对种蛋的雌雄识别,构建了可见/近红外透射光谱信息采集系统,在200~1100 nm的波长范围内采集了345枚孵化了0~8 d的种鸭蛋光谱数据。搭建了适用于种鸭蛋光谱信息的6层卷积神经网络(convolutional neural network,CNN),其中包括输入层、3个卷积层、全连接层与输出分类层。卷积层可以提取光谱中的有效信息,全连接层通过对卷积层提取的局部特征进行整合供输出层分类决策。另外在卷积神经网络中引入局部响应归一化和dropout操作能够加快网络的收敛速度。利用该卷积神经网络构建鸭胚雌雄信息识别网络,通过对比与分析不同孵化天数的识别效果,发现孵化7d的识别效果最佳。随后将孵化7 d的种鸭蛋原始光谱数据进行噪声去除,选取500~900 nm波段用于后续的特征波长选取和建模。分别运用了竞争性自适应重加权算法(CARS)、连续投影算法(SPA)与遗传算法(GA)选择能够区分鸭胚性别的波长点,将选取的特征波长转换为二维的光谱信息矩阵,二维光谱信息矩阵保留了一维光谱的有效信息,同时极大地方便了与卷积神经网络的结合。利用二维光谱信息矩阵和卷积神经网络相结合,实现孵化早期阶段鸭胚的雌雄识别。经检验,基于SPA算法和CNN网络建立的模型效果较佳,其中训练集、开发集及测试集的准确率分别为93.36%,93.12%和93.83%;基于GA算法和CNN网络建立的模型效果次之,训练集、开发集及测试集的准确率分别为90.87%,93.12%和86.42%;基于CARS算法和CNN网络建立的模型的训练集、开发集及Gender identification of embryonated eggs in China has always been a key issue in poultry industry development.In poultry meat production,males tend to be bred,while the egg production industry tends to breed females.If the male and female eggs can be identified in the early hatching process,it will reduce the cost of poultry hatching industry improve the economic benefits of poultry egg and meat production industry.This paper takes duck eggs as the research object.To realize the gender identification of duck eggs at the early hatching stage,a visible/near-infrared transmission spectrum acquisition system was constructed,which can collect the Spectral data of 345 duck eggs hatching from 0 to 8 days with the wavelength range of 200~1100 nm.A 6-layer Convolutional Neural Network(CNN)for duck eggs’spectral information was established,including input layer,3 convolutional layers,1 fully connection layer and output classification layer.The convolutional layer is used for extraction for the effective information in the spectrum.The full connected layer can integrate the local features extracted by the convolution layer for the classification decision of the output layer.In addition,the introduction of local response normalization and dropout operations in the convolutional neural network can accelerate the convergence speed of the neural network.The convolutional neural network was used to construct a duck embryo male and female information recognition network.By comparing and analyzing the recognition effects of different incubation days,it was found that the recognition effect was the best after 7 days of incubation.Subsequently,the duck eggs’original spectral data hatched for 7 days were removed for noise,and the 500~900 nm band was selected for subsequent characteristic wavelength selection and modeling.Competitive adaptive reweighting algorithm(CARS),successive projections algorithm(SPA)and genetic algorithm(GA)were used to select the characteristic wavelengths that can distinguish the sex of duck embryos,and

关 键 词:种鸭蛋 雌雄 卷积神经网络 无损检测 可见/近红外光谱 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象