检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:夏平凡 倪志伟[1,2] 朱旭辉[1,2] 倪丽萍[1,2] 彭鹏 XIA Pingfan;NI Zhiwei;ZHU Xuhui;NI Liping;PENG Peng(School of Management,Hefei University of Technology,Heifei 230009;Key Laboratory of Process Optimization and Intelligent Decision-Making,Ministry of Education,Hefei 230009)
机构地区:[1]合肥工业大学管理学院,合肥230009 [2]合肥工业大学过程优化与智能决策教育部重点实验室,合肥230009
出 处:《系统科学与数学》2021年第3期730-746,共17页Journal of Systems Science and Mathematical Sciences
基 金:国家自然科学基金(91546108,71521001,61806068);安徽省自然科学基金项目(1908085QG298,1908085MG232);安徽省科技重大专项项目(201903a05020020);中央高校基本科研业务费专项资金项目(JZ2019HGTA0053,JZ2019HGBZ0128);过程优化与智能决策教育部重点实验室开放课题资助。
摘 要:选择性集成学习可以使用较少数目的基分类器,提高集成分类能力.基分类器间的差异性和平均精度是影响集成性能的两个重要指标.当集成系统中基分类器间差异性较大时,则其平均精度较小;当基分类器的平均精度较大时,则其差异性较小.故二者之间的平衡状态可使集成性能达到最优.为了寻找该平衡状态,提出一种基于反向二元萤火虫算法和差异性测度的选择性集成方法(RBGSODSEN).首先,采用Bootstrap抽样方法独立训练出多个基极限学习机(extreme learning machine,ELM),构建原始基ELM池;其次,采用差异性测度对原始基ELM池进行预选择,选择部分差异性和预测精度均较优的基ELM,剔除综合性能较差的基ELM,降低选择性集成的计算复杂度;接着,改进萤火虫的位置更新方式,引入反向搜索、协同进化和随机变异机制,提出一种反向二元萤火虫算法(RBGSO);最后,采用RBGSO对预选择后剩下的基ELM进行二次选择,选择出集成性能最优的基ELM子集成.在25个标准数据集上的实验结果表明,与其他选择性集成方法相比较,RBGSODSEN选择了较少规模的基ELM,取得了更优的预测性能,具有较好的稳定性、有效性和显著性.Selective ensemble can enhance the ensemble classification ability using less number of base classifiers.Diversity and the average accuracy of base classifiers are two important indicators that affect the ensemble performance.If the base classifiers in an ensemble system have a large diversity,then it achieves a low average accuracy.If the mean accuracy of base classifiers is low,then it performs less diversity.Hence,the balance between them can make the ensemble perform the best.To find the balance,selective ensemble based on reverse binary glowworm swarm optimization and diversity measure(RBGSODSEN)is proposed.Firstly,an initial pool of base extreme learning machine(ELM)is constructed through training some base ELMs independently by using bootstrap sampling method;Secondly,those base ELMs in the pool are pre-pruned using the diversity measure,and the computation complexity can be remarkably reduced.Then some base ELMs with better difference and prediction accuracy are selected,and the base ELMs with poor comprehensive performance are eliminated;Thirdly,reverse binary glowworm swarm optimization(RBGSO)is proposed by improving moving way of glowworms,and introducing reverse searching,co-evolution and random mutation mechanisms;Finally,the optimal sub-ensemble of base ELMs is selected from the remaining base ELMs after pre-pruning by using RBGSO.Experimental results on 25 UCI datasets indicate that RBGSODSEN obviously outperforms other selective ensemble approaches with less size of base ELMs.It has relatively high stability,effectiveness and significance.
关 键 词:选择性集成 二元萤火虫算法 反向搜索 差异性测度 极限学习机
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171