基于小波包变换的数码钢琴音频信号特征识别方法  被引量:3

Feature recognition method of digital piano audio signal based on wavelet packet transform

在线阅读下载全文

作  者:刘红梅 LIU Hongmei(Aks vocational and technical college,Akesu Xinjing 843000,China)

机构地区:[1]阿克苏职业技术学院,新疆阿克苏843000

出  处:《自动化与仪器仪表》2021年第5期21-24,共4页Automation & Instrumentation

基  金:中国教育学会教育机制研究分会“十二五”科研规划课题《基于工作过程的〈现代纺织技术专业〉人才培养方案与核心课程标准开发实践研究》(No.[2013]KC220)。

摘  要:为了提高数码钢琴音频信号检测和特征提取能力,提出基于小波包变换的数码钢琴音频信号特征识别方法。采用频谱感知算法构建数码钢琴音频信号的多源信息采集模型,对采集的数码钢琴音频信号采用频谱特征分离方法实现信号降噪处理,采用多门限判决和阈值检测方法,实现对数码钢琴音频信号的多尺度特征分解,采用小波包变换方法构建数码钢琴音频信号的频谱特征分解模型,提取数码钢琴音频信号的细节特征量,根据数码钢琴音频信号的时频特征分布和频谱特征的聚类性,实现对数码钢琴音频信号的特征优化识别。仿真结果表明,采用该方法进行数码钢琴音频信号特征识别的精度较高,信号准确检测概率较好,提高了数码钢琴音频的智能分析能力。In order to improve the digital piano audio signal detection and feature extraction capabilities, a digital piano audio signal feature recognition method based on wavelet packet transform is proposed.The spectrum sensing algorithm is used to construct a multi-source information collection model of the digital piano audio signal.For the collected digital piano audio signal, the spectral feature separation method is used to realize signal noise reduction processing, and the multi-threshold judgment and threshold detection method are used to realize the multi-scale feature decomposition is digital piano audio signal.Using the wavelet packet transform method to construct the spectral feature decomposition model of the digital piano audio signal, the detailed feature quantity of the digital piano audio signal is extracted, and according to the time-frequency feature distribution and the clustering of the spectral features of the digital piano audio signal, optimized recognition is realized of the characteristics of digital piano audio signals.The simulation results show that the accuracy of the digital piano audio signal feature recognition using this method is higher, the signal accuracy detection probability is better, and the intelligent analysis ability of the digital piano audio is improved.

关 键 词:小波包变换 数码钢琴 音频信号 特征识别 关联谱 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象