检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张耀 武富春[1] 王明[1] 段宏 张昭 王海龙 ZHANG Yao;WU Fu-chun;WANG Ming;DUAN Hong;ZHANG Zhao;WANG Hai-long(North Automatic Control Technology Institute,Taiyuan 030006,China)
出 处:《火力与指挥控制》2021年第4期72-77,共6页Fire Control & Command Control
基 金:兵器工业联合基金资助项目(6141B011504)。
摘 要:针对高动态强对抗战场环境下,无人战车面临的自主行为决策问题,分析了未来陆战场无人战车实际作战需求,构建了基于马尔可夫决策过程的自主行为决策模型,提出了一种深度强化学习结合行为树的方法,利用行为树的逻辑规则与先验知识降低强化学习问题的难度,保证收敛性和鲁棒性,同时使行为决策模型具有学习能力。构建典型作战场景,验证深度强化学习结合行为树的无人战车自主行为决策方法的有效性。Aiming at the problems of autonomous behavior decision-making faced by unmanned combat vehicles in a highly dynamic and strong confrontation battlefield environment,the actual combat requirements of future unmanned combat vehicles on land battlefields are analyzed,and an autonomous behavior decision-making model based on the Markov decision-making process is constructed.The method of deep reinforcement learning combined with behavior trees is proposed,the logic rules and prior knowledge of the behavior tree are used to reduce the difficulty of reinforcement learning problems and to ensure convergence and robustness,and to make behavior decision models have learning capabilities to deal with emergency situations.A typical combat scenario is constructed to verify the validity of the autonomous behavior decision-making method of unmanned combat vehicles combined with deep reinforcement learning and behavior trees.
分 类 号:TJ811[兵器科学与技术—武器系统与运用工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222