检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郝苗 陈临强[1] HAO Miao;CHEN Linqiang(Computer and Software School,Hangzhou Dianzi University,Hangzhou 310018,China)
机构地区:[1]杭州电子科技大学计算机学院,浙江杭州310018
出 处:《电子科技》2021年第7期50-55,78,共7页Electronic Science and Technology
基 金:国家级大学生创新创业训练项目(201610336013)。
摘 要:为解决中文微博情感的分类问题,文中提出了基于微博数据将PMI与Hownet相结合的情感分类方法。通过对微博数据短小、新颖特征的研究,提出词典合并方法。将现有词典按照Hownet词语相似度合并,利用PMI对网络词语进行情感分类。添加网络情感词构造适应微博文本特征的情感词典,并在新词典的基础上结合监督学习方法训练情感分类模型。实验结果表明,用此方法进行情感分析能够有效识别网络新词对情感分析的影响,准确率可达78.3%,在对含有网络新词的微博情感分析上,该方法相比仅使用词典或者监督学习的准确率更高。To solve the problem of Chinese microblog sentiment classification,a sentiment classification method combining PMI and Hownet based on microblog data is proposed.Through the research on the short and novel features of microblog data,a method of dictionary merging is proposed.The existing dictionaries are merged according to Hownet word similarity,and PMI is used to perform sentiment classification of online words.The network sentiment words are added to construct sentiment dictionary that adapts to the features of microblog text,and sentiment classification models are trained based on the new dictionary combined with supervised learning methods.The experimental results show that using this method for sentiment analysis can effectively identify the impact of new internet words on sentiment analysis,with an accuracy rate of 78.3%.In the sentiment analysis of microblog containing new words on the Internet,the accuracy rate is higher than that of only using dictionaries or supervised learning.
关 键 词:情感词典 微博文本分类 监督学习 情感分析 Hownet相似度 PMI 观点挖掘 基准词
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.189.95