运动状态下肌肉耐力测试指标筛选方法研究  

Method of Selecting Indexes of Muscle Endurance Test under Condition of Exercise

在线阅读下载全文

作  者:姚晶晶[1] YAO Jing-jing(Department of General Education,Anhui Xinhua University,Hefei,Anhui 230088,China)

机构地区:[1]安徽新华学院通识教育部,安徽合肥230088

出  处:《河北北方学院学报(自然科学版)》2021年第5期25-30,共6页Journal of Hebei North University:Natural Science Edition

基  金:安徽新华学院校级课题:“高校足球对校园文化构建的影响分析”(IFQE201812)。

摘  要:为不断优化中国体质健康测试中运动状态下肌肉耐力测试方法,结合主成分分析原理,提出一种肌肉耐力测试指标筛选方法。利用自动化测力设备,获取运动状态下运动员的肌肉耐力测试数据。以采集的数据为基础,分别从运动指标、肌肉力量指标以及骨密度指标等多个方面初步筛选测试指标。分析初选结果中肌肉耐力测试指标的相似性和可信度,利用主成分分析原理将可信度低的指标剔除,并选择主成分方差高的指标替换其他相似指标,从而得出肌肉耐力测试指标的终选结果。通过筛选性能对比实验的分析得出结论:与传统筛选方法相比,设计的肌肉耐力测试指标的筛选速度更高,实时性更强。To optimize the method of muscle endurance test under exercise in Chinese physical health test,a muscle endurance test index screening method was proposed based on the principle of principal component analysis.The muscle endurance test data of athletes in the state of motion were obtained by using automatic force measuring equipment.On the basis of the collected data,the test indicators were preliminarily screened from the aspects of motor indicators,muscle strength indicators and bone mineral density indicators.The similarity and reliability of the muscle endurance test indexes in the primary results were analyzed,the indexes with low reliability eliminated by using the principle of principal component analysis,and the indexes with high principal component variance selected to replace other similar indexes,so as to obtain the final selection results of the muscle endurance test indexes.Through the comparative analysis of screening performance experiments,the conclusion is that compared with the traditional screening methods,the designed muscle endurance test indicators have higher screening speed and better real-time performance.

关 键 词:运动状态 肌肉耐力 测试指标 指标筛选 

分 类 号:G818[文化科学—体育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象