检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:雷剑梅 曾令秋[1,3] 牟洁 陈立东[1] 王淙[1] 柴勇 LEI Jian-mei;ZENG Ling-qiu;MU Jie;CHEN Li-dong;WANG Cong;CHAI Yong(State Key Laboratory of Vehicle NVH and Safety Technology,Chongqing 400044,China;School of Automotive Engineering,Chongqing University,Chongqing 400044,China;College of Computer Science,Chongqing University,Chongqing 400044,China)
机构地区:[1]汽车噪声振动和安全技术国家重点实验室,重庆400044 [2]重庆大学汽车工程学院,重庆400044 [3]重庆大学计算机学院,重庆400044
出 处:《计算机科学》2021年第6期190-195,共6页Computer Science
基 金:汽车噪声振动和安全技术国家重点实验室2019年度开放基金(NVHSKL-201913);国家自然科学基金(61601066)。
摘 要:智能汽车的快速发展促使电磁兼容(Electromagnetic Compatibility, EMC)测试技术得以完善,同时也给车辆EMC设计带来了新的挑战,而面向测试数据的故障排查有利于车辆EMC的设计。随着电子系统复杂性的提升,车载系统设计人员面临着越来越多的电磁兼容故障可能性,因此需要更为有效的EMC故障诊断方法。然而,由于EMC测试数据集具有样本小、非线性、高维等特点,致使EMC故障诊断难度较大。鉴于此,结合EMC测试工程师多年的整改经验,文中提出了一种关于电磁兼容测试数据的特征提取算法,并利用从测试数据中提取出的有价值的特征数据,搭建了支持向量机二分类模型,实现了EMC故障分类,并展示了相应的应用效果。为了验证所提方法的有效性,采用朴素贝叶斯分类模型进行对比,实验结果表明,所提方法能够满足智能汽车EMC故障诊断的需求。The rapid development of intelligent vehicles not only improves electromagnetic compatibility(EMC)testing technology,but also brings new challenges to vehicle EMC design,which is benefited from test data-oriented troubleshooting.With the increase in electronic complexity,vehicle on-board system designers should confront with more and more EMC failure possibilities and they are in need of effective EMC failure diagnosis approach.However,EMC fault diagnosis is difficult due to the distinguishing features of EMC test dataset,such as small sample,nonlinear,high dimensions,etc.In view of this situation,this paper puts forward a feature extraction algorithm for electromagnetic compatibility test data based on years of rectification experience of EMC test engineers,and uses the valuable feature data extracted from the test data to set up a support vector machine(SVM)two classification model.Corresponding application effect is displayed.In order to verify the effectiveness of the proposed method,this paper adopts the naive Bayesian classification model for comparison.The experimental results show that the proposed method can match the demand of EMC fault diagnosis for intelligent vehicles.
关 键 词:测试数据 EMC 特征提取 支持向量机 故障诊断 朴素贝叶斯
分 类 号:TP206.3[自动化与计算机技术—检测技术与自动化装置] TP181[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222