一种基于机器视觉的铅酸蓄电池尺寸检测方法  被引量:9

A Method of Size Detection for Lead-acid Battery Based on Machine Vision

在线阅读下载全文

作  者:崔可涛 刘怀广[1,2] 周诗洋[1,2] 杨金堂[1,2] CUI Ketao;LIU Huaiguang;ZHOU Shiyang;YANG Jintang(Key Laboratory of Metallurgical Equipment and Control Technology,Ministry of Education,Wuhan University of Science and Technology,Wuhan Hubei 430000,China;Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering,Wuhan University of Science and Technology,Wuhan Hubei 430000,China)

机构地区:[1]武汉科技大学,冶金装备及其控制教育部重点实验室,湖北武汉430000 [2]武汉科技大学,机械传动与制造工程湖北省重点实验室,湖北武汉430000

出  处:《机床与液压》2021年第11期97-102,131,共7页Machine Tool & Hydraulics

基  金:国家重点专项资助项目(2018YFC1902400);国家自然科学基金青年科学基金项目(51805386);湖北省技术创新专项重大项目(2017ACA180)。

摘  要:国内废旧铅酸电池回收效率较低,仍停留在人工分拣与回收处理阶段。为此,提出一种基于机器视觉的智能拆解方法。通过工业相机采集铅酸电池图像后,通过去噪、二值化、连通域提取、边缘检测与作边缘最小外接矩形完成尺寸检测,通过HSV色彩分割、Blob连通域检测完成槽数检测,依据所得的相关检测信息控制切割机对废旧铅酸电池进行切割与回收,实现了高速、高精度检测,提高了电池的回收率及回收效率,减少了对环境造成的污染。The recycling efficiency of waste lead-acid batteries in China is low and still remains in manual sorting and recycling treatment.Therefore,an intelligent disassembly method based on machine vision was proposed.After the images of lead-acid battery was collected by industrial camera,the size detection was completed through denoising,binarization,connected domain extraction,edge detection and making the minimum peripheral rectangle of the edge image;through HSV color segmentation and Blob connected domain detection,the number of slots was detected;the relevant detection information obtained was used to control the cutting machines to cut and recycle waste lead-acid batteries.Through this method,high speed and high precision detection are realized,the recovery rate and efficiency of the battery are improved,and the pollution to the environment is reduced.

关 键 词:机器视觉 图像处理 铅酸电池 槽数检测 尺寸检测 

分 类 号:TP391.4􀆰[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象