基于jerk能量最小化的空间五次G2插值曲线构造  

Construction of spatial quintic G2 interpolating curves by jerk energy minimization

在线阅读下载全文

作  者:陈娟[1] 何歆 张起航 孙义环 陆利正 CHEN Juan;HE Xin;ZHANG Qihang;SUN Yihuan;LU Lizheng(School of Statistics and Mathematics,Zhejiang Gongshang University,Hangzhou 310018,China)

机构地区:[1]浙江工商大学统计与数学学院,浙江杭州310018

出  处:《厦门大学学报(自然科学版)》2021年第4期729-734,共6页Journal of Xiamen University:Natural Science

基  金:浙江省自然科学基金(LY21F020009)。

摘  要:光顺曲线具有简单的曲率轮廓,在计算机辅助设计、轨道规划和相关应用领域有重要的需求.首先,针对给定的G2数据,构造一条含4个自由参数的空间五次Bézier曲线使其在端点满足特定曲率和Frenet标架.然后,使用jerk能量近似表示曲线的曲率变化,定义目标函数为jerk能量和曲线长度的加权组合,提出基于jerk能量最小化的空间五次G2插值曲线构造方法.最后,将目标函数简化为二元四次多项式,使用投影牛顿法求解约束优化问题.与之前基于应变能最小化的方法相比,实例表明该方法能够生成更光顺的曲线和更好地处理空间曲线.Fair curves possess simple curvature profiles and secure significant demands in computer aided design,trajectory planning and related application fields.First,for given G2 data,a spatial quintic Bézier curve with four free parameters is constructed to satisfy specified curvatures and Frenet frames at endpoints.Then,by defining the objective function as a weighted combination of jerk energy(used to approximate curvature variation of a curve)and curve length,a construction method is proposed for obtaining spatial quintic G2 interpolating curves by jerk energy minimization.Finally,the objective function after simplification is converted into a bivariate quartic polynomial,and the constrained optimization problem is solved through the projected Newton method.Compared to the previous method based on strain energy minimization,numerical examples demonstrate that,in the new method,curves with better fairness can be generated and the case of spatial curves can be handled.

关 键 词:BÉZIER曲线 五次G2插值 jerk能量 光顺曲线 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象