检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨军 李高平 李庆 YANG Jun;Ll Gao-ping;LI Qing(School of Mathematics,Southwest Minzu University,Chengdu 610041,China)
出 处:《西南民族大学学报(自然科学版)》2021年第3期326-329,共4页Journal of Southwest Minzu University(Natural Science Edition)
基 金:国家自然科学基金青年基金项目(11401493);西南民族大学中央高校基本科研业务费专项资金项目(2020NYB17)。
摘 要:2020年,Y. Wang基于构形和可归约性的经典概念提出了一份四色猜想(The Four Color Conjecture, 4CC)的归谬法证明.首先构造反例指出其"临界k色图"定义的一个缺陷.其次对比分析表明,把"最小图"改为"临界5色图"的做法产生了逻辑二难困境:若按前者对待,则原文尚缺论证能够抵抗传统的Heawood图的反例攻击;若按后者处理,则当今图论无法保证其存在性.In 2020, Y. Wang proposed a proof by contradiction of the Four Color Conjecture(4 CC) based on the two classic concepts of configuration and reducibility. This article first constructs a counterexample to point out a defect in the definition of "critical 5-chromatic graph". Secondly, the comparative analysis shows that the practice of changing the "minimal graph" to the "critical 5-chromatic graph" has begot a logical dilemma: If it is treated as the former, then the original still lacks the proof that it can resist the counterexample attack of the traditional Heawood graph;if it is dealt with as the latter, then the contemporary graph theory cannot guarantee its existence.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.2.112