检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邬少飞[1] WU Shaofei(School of Computer Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China)
机构地区:[1]武汉工程大学计算机科学与工程学院,湖北武汉430205
出 处:《武汉工程大学学报》2021年第3期349-354,共6页Journal of Wuhan Institute of Technology
摘 要:针对2016年以后的互联网里国内外公开的专利情报领域信息,从专利情报信息的研究方法、研究应用和新技术应用趋势的预测3个方面对专利情报挖掘领域的研究的最新进展进行了论述。对以复杂网络为基础和以时间为基础的方法等方面展开探讨。对于当前的研究缺陷分析从没有充足的实验验证、研究问题的界限不明确、在复杂问题的研究中算法的精确度不高和没有利用新颖度较高的人工神经网络等四个角度进行分析梳理,最后从专利文本检索、专利数据重构和再处理、专利大数据挖掘和专利分析报告的自动生成与智能解读等4个方面对互联网情报挖掘新技术进行了归纳。The patent information published in China and other countries on the internet after 2016 was analyzed.Based on the above data,reviews were performed on the latest development in patent information mining in terms of the research methods of patent information,the research and application of patent intelligence information,and the prediction of the application trend of new technology.The complex networkbased methods,the time-based methods,and the patent mining-based methods were discussed.It is found that problems existing in this research area can be classified into four categories:insufficient experimental verification,the indefinite boundary of research questions,low accuracy of algorithms,and the absence of the artificial neural network in patent mining.Finally,the future research trends for the internet intelligence information mining were summarized as follows:patent text retrieval,patent data refactoring and reprocessing,big data mining of patent,and automatic generation and intelligent interpretation of patent analysis reports.
关 键 词:情报挖掘 专利分析 挖掘方法 术语抽取 复杂网络分析
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15