基于ORB特征的高分辨率图像拼接改进算法  被引量:15

Improved Algorithm for High-Resolution Image Stitching Based on ORB Features

在线阅读下载全文

作  者:刘天赐 宋延嵩[2] 李金旺 赵馨[1] Liu Tianci;Song Yansong;Li Jinwang;Zhao Xin(College of Electronic Information Engineering,Changchun University of Science and Technology,Changchun,Jilin 130022,China;Institute of Space Photo-Electronic Technology,Changchun University of Science and Technology,Changchun,Jilin 130022,China)

机构地区:[1]长春理工大学电子信息工程学院,吉林长春130022 [2]长春理工大学空间光电技术研究所,吉林长春130022

出  处:《激光与光电子学进展》2021年第8期77-84,共8页Laser & Optoelectronics Progress

基  金:国家自然科学基金(91838301)。

摘  要:针对传统图像拼接方法处理速度慢、效率低、无法满足高分辨率图像快速准确拼接的需要,提出一种基于ORB特征的高分辨率图像拼接改进算法。首先在ORB特征点提取的基础上,采用汉明距离进行快速粗匹配;然后基于渐进采样一致性(PROSAC)算法对匹配点对进行优化,去除误匹配点对之后,求解图像变换矩阵;最后采用渐入渐出加权融合算法对图像重叠区域进行融合,去除拼接痕迹。实验结果表明,相较于传统算法,本文算法不仅在处理速度上具有明显优势,而且匹配准确度更高,能够对高分辨率图像实现快速准确的拼接。The traditional image stitching method has low processing speed,is inefficient,and unable to meet the requirements for fast and accurate stitching of high-resolution images.This paper proposes an improved algorithm of high-resolution image stitching based on Oriented FAST and Rotated BRIEF(ORB)features.First,based on the ORB feature point extraction,the Hamming distance is used for fast rough matching.Then,the matching point pair is optimized based on the progressive sampling consistency(PROSAC)algorithm.Next,after removing the mismatch point pair,the image transformation matrix is solved.Finally,the weighted fusion algorithm is used to fuse the overlapping areas of the image to remove the stitching traces.Experimental results show that the proposed algorithm not only has more advantages in processing speed but also has a higher matching accuracy compared to traditional algorithms.In addition,it can realize fast and accurate stitching of high-resolution images.

关 键 词:图像处理 图像拼接 特征点提取 特征点匹配 渐进采样一致性 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象