三维网格去噪算法研究综述  被引量:2

3D Mesh Models Denoising Algorithms:A Survey

在线阅读下载全文

作  者:张栋栋 龚伟华 ZHANG Dong-dong;GONG Wei-hua(School of Information Science and Technology,Zhejiang Sci-Tech University,Hangzhou 311121,China)

机构地区:[1]浙江理工大学信息学院,浙江杭州311121

出  处:《软件导刊》2021年第6期235-242,共8页Software Guide

摘  要:随着电影、游戏行业的发展,三维模型越来越重要。三维扫描仪的普及,使现实中的物体转化为虚拟的三维数据变得容易,但由于设备精度、设备运动、物体遮挡、光线反射等原因,扫描获取的模型往往包含各种噪声,如高斯噪声、脉冲噪声等,会导致其和真实物体有一定差别。噪声会降低网格质量,并且对后期使用该网格造成影响,因此研究网格去噪算法具有重要意义。虽然网格去噪技术在不断发展,但依然具有以下问题:首先是如何区别特征和非特征区域;其次是如何保持特征;最后是参数选取。针对这些问题,在现有的主流去噪算法基础上,将去噪算法分为各向同性法、各向异性法,并对各种方法进行分析、评估与讨论。最后根据这些算法的优点和存在的问题提出网格曲面去噪技术的发展方向。The development of film and game industry makes the acquisition and processing of 3D model more and more important.In recent years,with the popularity of 3D scanners,real objects can be easily transformed into virtual 3D data.However,due to the accuracy of the equipment,the motion of the equipment,the occlusion of the object,the reflection of light and so on,the model obtained by scanning often contains various kinds of noise,such as gaussian noise,pulse noise.This can lead to a certain difference from the real object.Because noise will reduce the mesh quality and affect the later use of the mesh,it is of great significance to study the mesh denoising algorithm.In recent years,despite the continuous development and progress of mesh denoising technology,mesh denoising still has the following challenges:first,how to distinguish features from non-feature regions;secondly,how to maintain the original features and denoise efficiently;Finally,the selection of parameters in mesh denoising algorithm.Aiming at these problems,this paper reviews some existing mainstream denoising algorithms,divides them into isotropic method and anisotropic method,and analyzes,evaluates and discusses various methods.Finally,according to the advantages and problems of these algorithms,the development direction of mesh surface denoising technology is put forward.

关 键 词:网格去噪 三维网格 网格平滑 数字几何处理 网格处理 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象