检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐永生 陈争光[1,2] Tang Yongsheng;Chen Zhengguang(College of Information and Electrical Engineering,Heilongjiang Bayi Agricultural University,Daqing 163319;Technology Innovation Center for Heilongjiang Modern Agricultural Internet of Things)
机构地区:[1]黑龙江八一农垦大学信息与电气工程学院,大庆163319 [2]黑龙江省现代农业物联网技术创新中心
出 处:《黑龙江八一农垦大学学报》2021年第3期93-99,共7页journal of heilongjiang bayi agricultural university
基 金:黑龙江省农垦总局重点科研计划项目(HKKYZD190804);黑龙江八一农垦大学研究生创新科研项目(YJSCX2019-Y77)。
摘 要:为实现土壤氮含量的快速检测,提出一种基于卷积神经网络(CNN)与可见近红外光谱的土壤氮含量检测方法。采用批量正则化及dropout技术提升模型性能,降低过拟合。实验中,对模型的训练次数及dropout丢弃比例进行了对比选择,并将结果与传统的PLSR及BP神经网络进行对比。结果表明,CNN模型的预测精度与泛化能力明显优于传统模型,测试集的决定系数分别比PLSR和BP神经网络高0.2731和0.1686,这表明CNN模型能够实现对土壤可见近红外光谱数据的特征提取,进而实现对土壤氮含量的快速检测,为后续的土壤养分快速检测仪器开发提供了基础。In order to realize the rapid detection of soil nitrogen content,a method based on convolutional neural network(CNN)and visible near infrared spectroscopy(NIRS)was proposed.Batch normalization and dropout technology were used to improve the model performance and reduce over fitting.In the experiment,the training times and dropout discarding ratio of the model were compared and selected,and the results were compared with the traditional PLSR and BP neural network.The results showed that the prediction accuracy and generalization ability of CNN model were significantly better than the traditional model,and the determination coefficient of test set was 0.2731 and 0.1686higher than that of PLSR and BP neural network,respectively,which showed that CNN model could realize the feature extraction of soil visible and near-infrared spectrum data,and then realize the rapid detection of soil nitrogen content,which provided the basis for the development of soil nutrient rapid detection instrument.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.141.157