以多臂赌博机建模的多目标互动式推荐系统  被引量:1

Multiple Objective Interactive Recommender Systems Based on Multi-armed Bandits

在线阅读下载全文

作  者:何炜俊 艾丹祥[1] HE Wei-jun;AI Dan-xiang(School of Management,Guangdong University of Technology,Guangzhou 520520,China)

机构地区:[1]广东工业大学管理学院,广州510520

出  处:《小型微型计算机系统》2021年第6期1192-1198,共7页Journal of Chinese Computer Systems

基  金:国家自然科学基金项目(71740024)资助.

摘  要:许多推荐技术(如协同过滤)存在以下不足,降低了用户的体验满意度和忠诚度:1)忽略了“用户兴趣和商品属性会随时间而改变”这一事实;2)过度追求预测准确性而牺牲了推荐多样性和新颖性.为此,提出一种能动态适应上述变化,同时优化推荐准确度、多样度和新颖度的互动式推荐系统.主要步骤:1)采用理想点法构造多目标优化函数;2)收集用户反馈信息,及时地更新推荐策略;3)基于多臂赌博机构建互动式推荐框架.实验表明,经过与用户不断地互动推荐,该系统的平均列表准确度、多样度和新颖度都在逐步提升.The existing recommender systems still face challenges below,resulting in less than satisfactory user experiences.They have overlooked the fact that user preference and item attribute change over time.Moreover,they provide improvement in accuracy usually at the expense of diversity and novelty.In this direction,we propose multiple objective interactive recommender systems which can better balance the conflicts in diversity,novelty and accuracy metrics and adapt to changes of user preference and item attribute.The models rely on three main components:multi-objective optimization functions built by the methods of ideal points,dynamic prioritization schemes for weighting quality metrics and recommendation technologies modeled by the multi-armed bandit algorithm.The experimental results show that the proposed algorithms provide the capability to respond to a change in user requirements in real time,and recommend lists of personalized items that are accurate,diverse and novel.

关 键 词:推荐系统 多目标规划 多臂赌博机 互动式推荐 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象