检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔锦淼 胡明辉 冯坤[1,2] 贺雅 石保虎 CUI Jin-miao;HU Ming-hui;FENG Kun;HE Ya;SHI Bao-hu(Key Iab of Engine Health Monitoring Control and Networking of Minstry of Education,Beijing University of Chenmical Technology,Bejing 100029,China;Bejing Key laboratory of High-End Mechanical Equipment Health Monitoring and Self-Recovery,Bejing University of Chemical Technology,Beijing 100029,China;SINOPEC Marketing South China Company,Guangzhou 510180,China)
机构地区:[1]北京化工大学发动机健康监控及网络化教育部重点实验室,北京100029 [2]北京化工大学高端机械装备健康监控与自愈化北京市重点实验室,北京100029 [3]中国石化销售股份有限公司华南分公司,广东广州510180
出 处:《测控技术》2021年第6期71-77,94,共8页Measurement & Control Technology
基 金:NSFC-辽宁联合基金重点项目(U1708257);博士后创新人才支持计划(BX20180031);中央高校基本科研业务费专项资金资助(JD1913);国家重点研发计划(2017YFC0805702)。
摘 要:针对传统固定报警限未考虑时变工况的影响,易造成设备在高工况下虚警、低工况下漏警的问题,提出了一种基于BPNN(BP神经网络)和SVM-PDE(支持向量机概率密度估计)的旋转机械变工况故障预警方法。利用BPNN识别设备运行工况,结合信号处理方法从各工况振动数据中提取出多维特征并利用PCA(主成分分析)约简特征维度。将传统支持向量机(SVM)核函数改造为概率密度函数,将运行工况和低维特征输入SVM求解不同工况下正常样本的概率密度。以各个工况下正常样本概率密度值的边界值作为振动阈值进行故障预警。利用双转子试验台振动数据进行验证,结果表明,相较于固定阈值预警方法,基于BPNN和SVM-PDE的旋转机械变工况预警方法能有效降低漏警率和虚警率,验证了该方法的有效性。Traditional fixed alarm limit is easy to cause false alarm at high working conditions and missed alarm at low working conditions due to the influence of time-varying working conditions.An early warning method of rotating machinery based on BP neural network(BPNN)and probability density estimation of support vector machine(SVM-PDE)under variable working conditions is proposed.BPNN is used to identify the working conditions of the equipment.Combined with signal processing method,multi-dimensional features are extracted from vibration data of various working conditions,and principal component analysis(PCA)is used to reduce the feature dimension.The traditional support vector machine(SVM)kernel function is transformed into a probability density function,and the working conditions and low-dimensional features are input to the SVM to acquire the probability density of normal samples under different working conditions.The boundary of the probability density value of the normal sample under each working condition is taken as vibration threshold for fault early warning.The results of dual-rotor test rig show that compared with the fixed threshold early warning method,the early warning method of rotating machinery based on BPNN and SVM-FDE under variable working conditions can effectively reduce the false alarm rate and miss alarm rate,which verifies the effectiveness of the method.
关 键 词:旋转机械 变工况 支持向量机 概率密度估计 预警
分 类 号:TH17[机械工程—机械制造及自动化] TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38