显性效应对苏淮猪肉色性状遗传评估和基因组选择的影响  被引量:5

The influence of dominance effects on the estimation of meat color genetic parameters and genomic selection in Suhuai pigs

在线阅读下载全文

作  者:刘航[1,2] 侯黎明 王彬彬 刘晨曦[1,2] 陶伟 张总平 牛培培 李强 李平华 黄瑞华 LIU Hang;HOU Liming;WANG Binbin;LIU Chenxi;TAO Wei;ZHANG Zongping;NIU Peipei;LI Qiang;LI Pinghua;HUANG Ruihua(Institute of Swine Science,Nanjing Agricultural University,Nanjing 210095,China;Huafan Academy,Nanjing Agricultural University,Huai'an 225001,China;Huaiyin Xinhuai Pig Breeding Farm of Huai5an City,Huai!an 223322,China;Industrial Technology System Integration Innovation Center of Jiangsu Modern Agriculture(Pig),Nanjing 210095,China;Mulin New Rural Research and Development Corporation of Limited Huai'an City,Huai'an 225001,China)

机构地区:[1]南京农业大学养猪研究所,江苏南京210095 [2]南京农业大学淮安研究院,江苏淮安225001 [3]淮安市淮阴新淮种猪场,江苏淮安223322 [4]江苏现代农业(生猪)产业体系集成创新中心,江苏南京210095 [5]淮安沐林新农村发展研究有限公司,江苏淮安225001

出  处:《畜牧与兽医》2021年第6期1-6,共6页Animal Husbandry & Veterinary Medicine

基  金:国家自然科学基金-河南联合基金项目(U1904115);农业农村部全国优质瘦肉型猪联合育种项目(19190540);江苏省农业重大新品种创制项目(PZCZ201732);2017年度“淮上英才计划”创新创业领军人才项目。

摘  要:旨在评估显性效应对估计苏淮猪肉色性状遗传参数和基因组估计育种值(genomic estimated breeding value, GEBV)准确性的影响,为苏淮猪肉质性状育种提供理论依据。基于基因组最佳线性无偏预测(genomic best linear unbiased prediction, GBLUP)方法,提出2种模型:含加性效应的模型GBLUP-A和包含加性效应和显性效应的模型GBLUP-AD;试验测定487头苏淮猪屠宰后_(45 min)和24 h的肉色性状(亮度L*,红度a*和黄度b*),利用一般线性模型(general linear model, GLM)评定每个肉色性状的影响因素,通过DMU软件在2种GBLUP模型下估计苏淮猪肉色性状的遗传方差,并且比较其GEBV预测的准确性。结果显示:屠宰季节和屠宰批次对所有肉色性状均有显著影响,L*值在夏季时最高,在春季时最低,而a*值和b*值在春季时最高,夏季时最低;L*值随着胴体重增加显著下降(P<0.05),a*值随着日龄的增加极显著上升(P<0.01),而b*值随着日龄的增加显著下降(P<0.05);苏淮猪肉色遗传力属于低至中等遗传力,其范围从0.13~0.32;显性效应对于估计不同肉色性状的遗传参数呈现不同的影响,显性遗传方差与加性遗传方差的比率在b*值和a*值中较大;在预测GEBV方面,除了L*_(24 h)和b*_(45 min)性状,L*_(45 min)、a*_(45 min)、a*_(24 h)和b*_(24 h)在GBLUP-AD模型中预测GEBV的准确性都有所提高。提示:在估计肉色性状GEBV的模型中加入显性效应,可以有效提高预测准确性,合理估计肉色性状的遗传参数。This study was to evaluate the influence of the dominance effect on the accuracy of estimating the genetic parameters and genomic estimated breeding value(GEBV) of meat color of Suhuai pigs, so as to provide a theoretical basis for the breeding of pork traits of the pigs. Based on the genomic best linear unbiased prediction (GBLUP) method,a GBLUP-A model with additive effect and GBLUP-AD,including additive effect and dominance effect models,was proposed in this study. The meat color (lightness L*,redness a*,and yellowness b*) of 487 Suhuai pigs were measured at _(45 min) and 24 h after slaughter,respectively. A general linear model (GLM) was used to evaluate the influencing factors of each meat color traits. The genetic variance of the meat color of Suhuai pigs was estimated by the DMU software under two GBLUP models,and the accuracy of GEBV prediction was compared. The results showed that slaughtering seasons and batches had significant effects on all the traits of meat color (P<0. 05),with the L* value being the highest in summer and the lowest in spring,and the a* and b* values being the highest in spring and the lowest in summer. The L* value decreased significantly as the carcass weight increased (P<0. 05),the a* value increased extremely significantly with the increasing age (P<0. 01),and the b* value decreased significantly with the increasing age (P<0. 05). In Suhuai pigs,the heritability of meat color belonged to low to medium heritability,which ranged from 0. 13 to 0. 32. The dominance effect had different influences on the estimation of genetic parameters of different meat color traits,and the ratio of dominance genetic variance and additive genetic variance was larger in the b* and a* values than in the L* value. In GEBV prediction,except for the L*_(24 h) and b*_(45 min) traits,the accuracies of GEBV prediction of the other 4 meat color traits (L*_(45 min),a*_(45 min),a*_(24 h) and b*_(24 h)) in the GBLUP-AD model were improved. The present study indicated that the prediction accuracy could be effect

关 键 词:苏淮猪 显性效应 基因组估计育种植 遗传参数 肉色 预测准确性 

分 类 号:S813[农业科学—畜牧学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象