基于声音信号的机械设备故障诊断  被引量:4

在线阅读下载全文

作  者:郑思宇 

机构地区:[1]重庆理工大学机械工程学院,重庆401320

出  处:《内燃机与配件》2021年第13期129-132,共4页Internal Combustion Engine & Parts

摘  要:如何在故障发生前对故障进行预测,对即将出现问题零部件进行提前维修和更换,这对于提高工业设备的使用寿命,避免设备突然发生故障对整个工业生产造成严重影响具有十分重要的意义。本文将利用傅立叶算法采集故障噪声信号特征,将其分为三种特征进行提取,并对采集取样的声音信号基于傅里叶算法进行数据分析。将优化的特征信息输入到卷积神经网络模型中进行故障识别和故障类型判断。

关 键 词:声音信号 傅里叶算法 卷积神经网络 

分 类 号:TP206.3[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象