检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑思宇
出 处:《内燃机与配件》2021年第13期129-132,共4页Internal Combustion Engine & Parts
摘 要:如何在故障发生前对故障进行预测,对即将出现问题零部件进行提前维修和更换,这对于提高工业设备的使用寿命,避免设备突然发生故障对整个工业生产造成严重影响具有十分重要的意义。本文将利用傅立叶算法采集故障噪声信号特征,将其分为三种特征进行提取,并对采集取样的声音信号基于傅里叶算法进行数据分析。将优化的特征信息输入到卷积神经网络模型中进行故障识别和故障类型判断。
分 类 号:TP206.3[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49