检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于霞[1] 李召鹏 YU Xia;LI Zhaopeng(School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China)
机构地区:[1]沈阳工业大学信息科学与工程学院,辽宁沈阳110870
出 处:《沈阳大学学报(自然科学版)》2021年第3期252-259,共8页Journal of Shenyang University:Natural Science
基 金:辽宁省高等学校基本科研资助项目(LQGD2017027).
摘 要:为解决生物识别中,手形特征维度高、计算量大、易受图像背景及手掌位移干扰等问题,提出一种基于压缩相对论廓特征点的手形识别方法.建立了手形轮廓相对于手形轮廓质心的坐标系,通过等间隔取点法寻找综合计算性能和准确率最好的手形特征点数量,以此数量等间隔提取手形轮廓,并用压缩特征点坐标作为手形识别特征.采用支持向量机作为分类器对不同手形特征进行识别,准确率达98.25%.In order to solve the problem that in biometrics,due to the high dimensionality of hand shope features and a large amount of cakulation,it is susceptible to interference from the image background and palm displacement,a hand shape recognition method based on compressed relative contour feature points was proposed.The coordinate system of the hand contour relative to the centroid of the hand contour was established,the number of hand shape feature points with the best comprehensive calculation performance and accuracy was found through the method of taking points at equal intervals,the hand contours were extracted from this number at equal intervals,and the coordinates of the compressed feature points were used as hand shape recognition features.Using support vector machine as a classifier to recognize different hand shape features,the accuracy rate is 98.25%.
关 键 词:手形识别 轮廓提取 特征点压缩 相对距离 支持向量机
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.41.223