检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢秋华[1] 鲁作华 邓生琼 刘倩倩 徐莉敏[1] 张登海[1] 刘兴晖[1] XIE Qiu-hua;LU Zuo-hua;DENG Sheng-qiong;LIU Qian-qian;XU Li-min;ZHANG Deng-hai;LIU Xing-hui(Dept.of Clinical Laboratory,Gongli Hospital of Shanghai Pudong New Area,Shanghai 200135,China)
机构地区:[1]上海市浦东新区公利医院检验科,上海200135
出 处:《同济大学学报(医学版)》2021年第3期375-380,共6页Journal of Tongji University(Medical Science)
基 金:浦东新区卫生系统重点学科群建设资助项目(PWZxq2017-15)。
摘 要:目的应用机器学习算法构建氨基末端脑钠尿肽(N-terminal pro-brain natriuretic peptide,NT-proBNP)灰值患者心力衰竭判别模型并评价。方法收集2013年1月至2018年12月在上海市浦东新区公利医院进行NT-proBNP实验室检测的患者临床资料和实验室检测信息,数据清洗后纳入研究对象,并按7∶3的比例划分训练集和测试集。用L1范数正则化和递归特征消除方法对特征进行筛选。应用基于机器学习的Logistic回归、随机森林、梯度提升树和XGBoost算法构建模型,比较4种方法构建的模型对NT-proBNP灰值患者心力衰竭判别价值。结果按重要性筛选出模型因子年龄、性别、肌酸激酶同工酶、肌酐、肌红蛋白、肌钙蛋白Ⅰ、血红蛋白、白细胞计数。Logistic回归、随机森林、梯度提升树和XGBoost四种模型灵敏度分别为58.42%、56.83%、65.74%和60.04%;特异度分别为57.47%、68.18%、60.13%、65.93%。结论基于机器学习建立的NT-proBNP灰值患者心力衰竭判别模型有一定临床价值,本研究结果应用价值有待于更大样本进行验证。Objective To construct and evaluate a heart failure discrimination model in patients with N-terminal pro-brain natriuretic peptide(NT-proBNP)gray value based on machine learning algorithms.Methods Clinical data of patients who underwent NT-proBNP laboratory testing at Gongli Hospital from January 2013 to December 2018 were retrospectively analyzed.Data were divided into training set and a test set with a ratio of 7∶3.L1 paradigm regularization and recursive feature elimination methods were used to filter the features.Machine learning-based logistic regression,random forest,gradient boosting tree,and XGBoost algorithms were applied to construct models to compare the discriminatory value of the models constructed by the four methods for heart failure in patients with NT-proBNP gray values.Results The model factors filtered by importance were age,sex,creatine kinase isoenzyme,creatinine,troponin,troponin I,hemoglobin,and leukocyte count.The sensitivities of logistic regression,random forest,gradient boost tree,and XGBoost models were 58.42%,56.83%,65.74%,and 60.04%,and the specificities of them were 57.47%,68.18%,60.13%,and 65.93%,respectively.Conclusion The machine learning-based NT-proBNP gray value model of heart failure has some clinical value,and the application of the results of this study needs to be validated in a larger sample.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.254