检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒋钰婷 罗晓清 JIANG Yuting;LUO Xiaoqing
机构地区:[1]江南大学人工智能与计算机学院,江苏无锡214122
出 处:《信息技术与信息化》2021年第6期22-24,共3页Information Technology and Informatization
基 金:国家自然科学基金(61772237)。
摘 要:上下文隐马尔可夫模型(contextual hidden markov model,CHMM)能够有效地利用多尺度系数间的相关性,得到图像系数的精确表示,但是传统的上下文计算方法仅针对邻域内的单个系数进行计算,没有考虑到局部甚至全局系数的影响。针对以上问题,提出了一种新的基于多输入细胞神经网络(multi-input cellular neural network,MCNN)的CHMM模型并用于图像融合。利用MCNN的动态传播效应得到全局优化的上下文变量,并通过网络的迭代循环进一步提高特征提取的准确性和鲁棒性。然后在高频系数上建立CHMM模型,基于系数的细节性采用加权的融合规则得到高频融合子带,低频子带采用基于区域能量取大的融合规则。实验检验了方法的有效性。
关 键 词:图像融合 多输入细胞神经网络 上下文隐马尔可夫模型 上下文变量
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28