Induced electron transfer by oxygen vacancy gradient on SnO conductive glass for electrocatalytic reduction  

氧空位浓度梯度诱导电子转移的电催化还原

在线阅读下载全文

作  者:Xiaoyun Zhang Dong Li Lian Wang Fan Yang Yuqiao Wang 张晓云;李东;王练;杨帆;王育乔(More info Affiliations:Institute of Advanced Materials,School of Chemistry and Chemical Engineering,Southeast University,Nanjing 211189,China)

机构地区:[1]More info Affiliations:Institute of Advanced Materials,School of Chemistry and Chemical Engineering,Southeast University,Nanjing 211189,China

出  处:《Science China Materials》2021年第8期2081-2085,共5页中国科学(材料科学(英文版)

基  金:financially supported by the National Natural Science Foundation of China (61774033)。

摘  要:Interface engineering is a strategy to boost intrinsic catalytic activities.Defect introduction,composition regulation,and heterostructure engineering are commonly used interface modification methods[1,2].Oxygen vacancy(OV)modulates electronic properties and structures by controlling surface electronic and atomic structures[3–5].OVis common to metal oxides(MOxs)as a shallow donor due to low formation energy[6,7].It plays an essential role in many photoelectrochemical(PEC)processes,such as PEC water splitting,dye-sensitized solar cells(DSSCs),supercapacitors,lithium-ion batteries(LIBs),and CO_(2)electro-reduction[8,9].At present,methods for regulating OVinclude plasma treatment,ambient annealing of oxygen defects,flame reduction,laser ablation,and electrochemical reduction[10,11]。通过表面氧空位缺陷调控催化剂的表面电子结构,实现催化剂表面易于富集参与反应的电子,从而提高还原催化效率.本文中,将导电玻璃隔绝空气加热,在其表面形成氧空位缺陷.通过控制热处理时间调控表面氧空位浓度梯度.氧空位能导致SnO_(2)导带弯曲,因此调控氧空位梯度可增强SnO_(2)导电玻璃表面电子富集速率,从而实现高效电催化还原反应.在相同条件下,使其催化性能可以和金属铂相媲美.

关 键 词:电催化还原 电子转移 催化剂表面 表面电子结构 导电玻璃 氧空位 热处理时间 金属铂 

分 类 号:O643.36[理学—物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象