检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:倪永婧[1] 郭巍[2] 张静涛 NI Yongjing;GUO Wei;ZHANG Jingtao(College of Information Science and Engineering,Hebei University of Science and Technology,Shijiazhuang 050000,China;The 54th Research Institute of CETC,Shijiazhuang 050081,China)
机构地区:[1]河北科技大学信息科学与工程学院,河北石家庄050000 [2]中国电子科技集团公司第五十四研究所,河北石家庄050081
出 处:《无线电工程》2021年第7期557-562,共6页Radio Engineering
基 金:国家部委基金资助项目。
摘 要:近年来,无线通信中对于传输延迟的要求越来越高。降低信道编码的码长,可以在信息速率较低的情况下,显著降低传输延迟。低密度奇偶校验码(LDPC)是当前广泛采用的信道编码,在LDPC的码长较短时,由于Tanner图上的环较多,周长小,因此传统的置信度传播算法对符号似然比的近似较差,从而影响了编码的性能。提出了基于循环神经网络的BP-RNN译码器,采用机器学习中的工具优化Trellis图中边的权重,与传统BP译码器相比,提高了短码长LDPC的译码器性能,从而在低信息速率的传输中降低通信延迟。Recently there is a strong need for low transmission delay in wireless communications.When the information rate is low,it is a good practice to reduce the block length of channel codes.While LDPC is the most widely used codes currently,when the code length of LDPC is short,there are many circles in Tanner graph and the girth of Tanner graph is small.These small circles produced by the traditional belief propagation algorithm lead to the poor estimation of symbol likelihood ratio,and undermine the performance of the code.A BP-RNN decoder based on recurrent neural network is proposed and the tools in machine learning optimize the weights in Trellis graph.Simulation results show that RNN based decoder outperforms the traditional BP decoder for short-length LDPC.Thus the transmission delay can be significantly reduced in low information rate communication without sacrificing the performance of communication.
关 键 词:低密度奇偶校验码 置信度传播算法 循环神经网络 最小-和算法
分 类 号:TN971[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.156.160