异步电动机深沟球轴承-转子系统振动特性研究  被引量:1

Research on Vibration Characteristics of Deep Groove Ball Bearing-Rotor System for Asynchronous Motor

在线阅读下载全文

作  者:孟思远 刘锋 李明旺 张占立[1] 张文虎 MENG Siyuan;LIU Feng;LI Mingwang;ZHANG Zhanli;ZHANG Wenhu(School of Mechanical and Electrical Engineering,Henan University of Science and Technology,Luoyang 471003,China;China Aerospace Science & Industry Nanjing Chenguang Group,Nanjing 210006,China;Beijing Institute of Control and Electronic Technology,Beijing 100038,China)

机构地区:[1]河南科技大学机电工程学院,河南洛阳471003 [2]南京晨光集团有限责任公司,南京210006 [3]北京控制与电子技术研究所,北京100038

出  处:《轴承》2021年第7期8-15,共8页Bearing

基  金:国家自然科学基金青年科学基金项目(51905152);国家重点研发计划重点专项(2018YFB0407304)。

摘  要:以某型异步电动机的深沟球轴承-转子系统为研究对象,在考虑了轴承非线性支承力的基础上对异步电动机转子系统的非线性振动问题展开研究。基于拉格朗日方程建立轴承-转子系统动力学模型,利用变步长龙格-库塔法对模型的微分方程组进行求解。分析了电动机转速、系统阻尼、轴承径向游隙和钢球数对转子系统非线性振动特性的影响,结果表明:在不同电动机转速和轴承径向游隙的影响下,系统动力学响应形式具有多样性,系统在拟周期运动和跳跃性倍周期分岔时的振幅较大,合理选择电动机转速和轴承径向游隙,增加系统阻尼和轴承钢球数,有利于系统运行状态的稳定性并减小有害振动。Taking the deep groove ball bearing-rotor system for an asynchronous motor as a research object,the nonlinear vibration of rotor system for asynchronous motor is researched on the basis of considering the nonlinear supporting force of the bearing.The dynamic model of bearing-rotor system is established based on the Lagrange equation,and the differential equations of the model are solved by the variable-step Runge-Kutta method.The influences of motor speed,system damping,bearing radial clearance and number of steel balls on nonlinear vibration characteristics of rotor system are analyzed.The results show that under the influence of different motor speeds and bearing radial clearances,the dynamic response of the system shows a wide range of diverse.The amplitudes of the system are larger in quasi-periodic motion and jump period-doubling bifurcation.The reasonable choice of motor speed and bearing radial clearance and increase of system damping and number of bearing steel balls are conducive to the stability of the system running state and reduce the harmful vibration.

关 键 词:滚动轴承 非线性振动 龙格-库塔法 动力学响应理论 弹性动力学分析 

分 类 号:TH133.3[机械工程—机械制造及自动化] O322[理学—一般力学与力学基础]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象