检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒋俊峰 谭伦农[1] 纪棋彬 JIANG Junfeng;TAN Lunnong;JI Qibin(School of Electrical and Information Engineering,Jiangsu University,Zhenjiang 212013,China)
出 处:《能源研究与信息》2021年第2期85-92,共8页Energy Research and Information
摘 要:为了以绿色、环保能源满足全球可持续发展的需求,可再生能源和电动汽车在全球范围内受到广泛推崇。在此情形下,高比例可再生能源发电和大规模电动汽车无序分散接入电网必将导致供求曲线的不稳定。为此,借助云存储技术和智能电网,提出了一种基于供求曲线的电动汽车充放电分时电价,并在制定充放电价格时考虑充电站的空闲率。以实现充电站和用户最大利益为目标函数,建立了电动汽车充放电价格模型。采用粒子群算法对该模型进行求解,并通过算例进行分析,验证了该模型的有效性和合理性。In order to meet the demands of global sustainable development with environmentfriendly and green energy,renewable energy and electric vehicles have popularized worldwide.In this case,high proportion of renewable energy generation as well as the large-scale separated connection of electric vehicles to the grid will inevitably lead to the instability of the supply and demand curve.Therefore,time-of-use electricity price of electric vehicle charging and discharging according to supply and demand curve was proposed via smart grid and cloud storage.Additionally,the charging and discharging price was determined with the considerations of the idleness rate of the charging stations.In this paper,the charging and discharging price model of electric vehicles is established to realize the maximum benefits of both charging stations and users.Particle swarm optimization(PSO)was used to solve this model.The validity and rationality of the model are verified by an algorithm case.
分 类 号:TM73[电气工程—电力系统及自动化] TM910.6
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28