改进灰色关联熵结合BP网络铁水脱硫率预测模型  被引量:2

A model for predicting desulfurization rate of molten iron based on combination of improved gray correlational entropy with neural network

在线阅读下载全文

作  者:纪俊红[1] 马铭阳 昌润琪 JI Junhong;MA Mingyang;CHANG Runqi(College of Safety Science and Engineering,Liaoning Technical University,Huludao 125000,China)

机构地区:[1]辽宁工程技术大学安全科学与工程学院,辽宁葫芦岛125000

出  处:《辽宁科技大学学报》2021年第2期129-134,共6页Journal of University of Science and Technology Liaoning

基  金:辽宁省教育厅项目(No.LJ2019JL016)。

摘  要:提出改进灰色关联熵结合神经网络的铁水脱硫率预测模型,用以降低脱硫成本,提高脱硫效率。将灰色关联与改进熵权法结合,优化输入,选取铁水进站质量、进站温度、温降、喷吹时间、石灰消耗量、镁消耗量与进站硫量作为神经网络的输入量,构建预测模型,并与其他模型的预测结果进行了对比分析。结果表明,改进灰色关联熵结合神经网络模型的预测精度更高,与单一BP神经网络、深度神经网络、随机森林模型相比,平均误差分别降低了4.20%、3.83%、4.65%。A prediction model for desulfurization rate of molten iron is proposed based on combination of improved gray correlational entropy with neural network to reduce the cost and improve the efficiency of desulfurization.The input is optimized by combining the gray correlation with the improved entropy weight method.The weight of intake molten iron,the intake temperature,the temperature drop,the injection time,the lime consumption,the magnesium consumption,and the initial sulfur content are selected as the inputs of the neural network,and the prediction model is constructed.The results are compared with those of other models.The results show that the new model exhibit the highest prediction accuracy.Compared with single BP neural network,deep neural network,and random forest model,the average error of the new model is reduced by4.20%,3.83%,and 4.65%,respectively.

关 键 词:铁水脱硫率 脱硫率预测 改进熵权 灰色关联 神经网络 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TF704.3[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象