检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李辉熠[1] 乔波 LI Hui-Yi;QIAO Bo(Hunan Mass Media Vocational and Technical College,Changsha 410100,China;College of Information and Intelligent Science and Technology,Hunan Agricultural University,Changsha 410128,China)
机构地区:[1]湖南大众传媒职业技术学院,长沙410100 [2]湖南农业大学信息与智能科学技术学院,长沙410128
出 处:《食品安全质量检测学报》2021年第10期4129-4135,共7页Journal of Food Safety and Quality
基 金:湖南省教育厅科学研究重点项目(20A249)。
摘 要:目的设计基于多角度像特征的果蔬识别方案。方法采用多角度特征的果蔬识别算法,在水平、垂直、多角度旋转等Haar-like特征的基础上与AdaBoost自学习算法充分结合。通过离线训练,获得识别西红柿的AdaBoost分类器,在此基础上以平均像素值为核心创造颜色特征分类器,使Haar-like与AdaBoost分类器有机结合,实现对果蔬类型的自动识别。结果以西红柿为例进行识别时,准确性超过95%,且该方法对干扰因素具有较强的抗性,完成一帧图像的识别只需85 ms。结论该方法能够迅速的完成识别任务,达到了实时性方面的要求。Objective To design a fruit and vegetable recognition scheme based on multi-angle image features.Methods The fruit and vegetable recognition algorithm based on multi-angle features was combined with AdaBoost self-learning algorithm on the basis of horizontal,vertical and multi-angle rotation Haar-Like features.Through offline training,an AdaBoost classifier for tomato recognition was obtained.On this basis,a color feature classifier was created based on the average pixel value.The Haar-like classifier and AdaBoost classifier were combined organously to realize automatic recognition of fruit and vegetable types.Results When tomatoes were used as an example,the accuracy was more than 95%,and the method had strong resistance to interference factors,it only took 85 ms to complete the recognition of one frame of image.Conclusion This method can quickly complete the recognition task,which meets the real-time requirements.
关 键 词:果蔬 多角度特征 Haar-like ADABOOST分类器 识别
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] S225.92[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.207.132