检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴磊 徐凯[2] WU Lei;XU Kai(Information Center,The First Affiliated Hospital of Chongqing Medical University,Chongqing 400016,China;College of Information Science and Engineering,Chongqing Jiaotong University,Chongqing 400074,China)
机构地区:[1]重庆医科大学附属第一医院信息中心,重庆400016 [2]重庆交通大学信息科学与工程学院,重庆400074
出 处:《微型电脑应用》2021年第7期108-110,130,共4页Microcomputer Applications
摘 要:为了有效地预测医院门诊量,充分考虑历史门诊量数据和工作日天数之间的关系,提出一种应用深度神经网络预测方法,深度神经网络模型由RBM层和预测层组成,采用无监督学习算法预训练网络参数,引入残差结构使输入信息跨层传输,利用反向学习算法微调网络参数,进而获取优化后的深度神经网络预测模型。实验结果表明,深度神经网络模型经过2层RBM训练之后,即可从原始样本中提取代表性较强的数据特征,所提方法在小样本数据下可以获得较好的预测精度,能够为医疗业务规划提供理论参考。To effectively forecast the outpatient in a hospital,by fully considering the relationship between historical outpatient volume data and working days,a deep neural network prediction method is proposed.The model consists of RBM layers and a prediction layer.An unsupervised learning algorithm is used to pre-train network parameters.A residual structure is introduced to enable input information to be transmitted across layers and use the reverse learning algorithm to fine-tune the network parameters,and then obtain the optimized deep neural network prediction model.Experimental results show that the deep neural network model can extract representative data features from the original samples after two layers of RBM training.Compared with the traditional prediction model,the proposed method can obtain better prediction accuracy under small sample data,which provides theoretical reference for medical business planning.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.137.145