检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘姝睿 吴雪娥 王远鹏[1] LIU Shurui;WU Xue'e;WANG Yuanpeng(Department of Chemical and Biochemical Engineering,College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,Fujian,China)
机构地区:[1]厦门大学化学化工学院化学工程与生物工程系,福建厦门361005
出 处:《化工学报》2021年第7期3576-3589,共14页CIESC Journal
基 金:国家自然科学基金项目(22038012,42077030);中央高校基本科研业务费专项资金(20720190001)。
摘 要:微生物胞外电子传递(EET)过程在自然界中普遍存在,并且在能源利用和环境修复等方面具有广阔的应用前景,但是低效的电子传递一直是其在实际应用中的关键瓶颈。纳米材料具有独特的表面效应、体积效应、量子尺寸及宏观量子隧道效应等性质,引入纳米材料与电活性微生物相结合实现优势互补,可以缩短电荷转移路径,从而提高EET效率。本文综述了EET方式,以及纳米材料的电子转移能力、氧化还原电势、表面结构与性质、生物相容性及纳米材料-微生物的界面构筑对EET过程的影响,重点阐述了纳米材料与电活性微生物界面构筑的各种策略,并讨论了这些策略的适用性和局限性,最后展望了纳米材料强化电活性微生物EET的未来研究方向。The process of microbial extracellular electron transfer(EET)is widespread in nature and has broad application prospects in energy utilization and environmental remediation.However,inefficient electron transfer has always been a key bottleneck in practical applications.Nanomaterials have unique properties such as surface effect,volume effect,quantum size,and macro-quantum tunneling effect.The combination of nanomaterials and electroactive microorganisms can achieve complementary advantages,which can shorten the charge transfer path and increase the rate of EET.This review introduces the pathways of EET,as well as the factors affecting the interface EET such as the electron transfer ability,redox potential,surface structure and biocompatibility of nanomaterials,with a focus on various strategies for constructing the interface between nanomaterials and electroactive microorganisms,and the applicability and limitations of these strategies are summarized.Finally,the future research direction of nanomaterials to enhance electroactive microorganism EET is prospected.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.87.167