检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林汨圣 王扬[1,2] 许可 LIN Mi-sheng;WANG Yang;XU Ke(South China University of Technology 510641,Guangdong,China;South China University of Technology Architectural Design and Research Institute Co.,Ltd,Guangdong,China)
机构地区:[1]华南理工大学建筑学院,广州510641 [2]华南理工大学建筑设计研究院有限公司,广州510641
出 处:《建筑技术》2021年第7期892-895,共4页Architecture Technology
摘 要:以Tensorflow 2.0为平台,通过Faster RCNN算法框架建立深度学习模型。以1620张居住建筑外墙面受损照片为数据集。选取其中1296张为训练集,对模型进行有监督训练并测试模型训练深度,324张为测试集校检模型精度。测试结果表明,深度学习模型对居住建筑外墙的污染类损伤检测率为88.82%;裂缝类损伤检测率为90.21%;破损类损伤检测率为90.94%,检测平均耗时为每图0.23s。深度学习检测模型可有效反馈外墙面的主要损伤情况,提高建筑工程管WC率。Tensorflow 2.0 is used as the framework to establish the deep learning model through faster RCNN algorithm.1620 damaged photos of the exterior wall of residential buildings were used as a data set.Among them,1296 photos are selected as training set for conducting supervised training on the model and testing the training depth of the model,and 324 photos are selected as the testing set for examining the detection precision of the model.Results show that the detection accuracy of the model of detecting dirt,crack and damage photos of exterior walls of residential buildings is about 88.82%,90.21%and 90.94%respectively.The average detection time is about 0.23 s per graph.The deep learning detection model can effectively feedback main damage and improve efficiency of construction management.
关 键 词:居住建筑 墙面损伤 图像检测 深度学习 建筑维护
分 类 号:TU71[建筑科学—建筑技术科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198