利用超高阶重力场模型检测水准测量粗差的方法研究  被引量:1

Detecting grosserrors in leveling using ultra-high-order gravity field model

在线阅读下载全文

作  者:杜向锋[1] 陈智伟 左智刚 DU Xiangfeng;CHEN Zhiwei;ZUO Zhigang(Guangdong Polytechnic of Industry and Commerce,510510,Guangzhou,Guangdong,China;Xidian University,710126,Xi’an,Shanaxi,China;Railway 20 Bureau,710016,Xi'an,Shaanxi,China)

机构地区:[1]广东工贸职业技术学院,广东广州510510 [2]西安电子科技大学,陕西西安710126 [3]中铁二十局集团有限公司,陕西西安710016

出  处:《北京师范大学学报(自然科学版)》2021年第3期411-416,共6页Journal of Beijing Normal University(Natural Science)

基  金:广州市科技计划资助项目(202102080682);国家自然科学基金资助项目(41674006)。

摘  要:当前水准测量仍然是高精度高程控制测量的首选方法,本文针对目前水准测量粗差缺乏有效检测方法这一问题,提出了基于超高阶重力场模型的粗差检测方法.以2个控制网为例展开研究,实验结果表明:1)EGM2008与EIGEN-6c4重力场模型均具有较高精度,应用上述2个模型计算的A、B测区测段粗差显著水平系数K满足三等限差K的比例≥78%,满足四等限差K的比例≥95%,显然高精度地球重力场模型为水准粗差检测提供了可能性;2)该方法应用于水准粗差检测效果良好,水准粗差越大,粗差检测的成功率就越高;3)采用移去-恢复法计算模型正常高后,该方法粗差检测的成功率有所提升.Leveling is currently still the preferred method of high-precision height control measurement. In this paper we propose a new method based on ultra-high-order gravity field model to detect gross error in leveling. We found that both EGM2008 and EIGEN-6 c4 gravity field models are of high precision. The proportion of significant level coefficient K values in areas A and B as calculated by these two models and meeting the third-class tolerance K values was found to be not less than 78%. The proportion that meeting the fourth-class tolerance K values was not less than 95%. Therefore high-precision earth gravity field model provides the possibility to detect leveling gross errors.This method was found to show good effect when applied to leveling gross error detection. The larger the leveling errors are,the higher the success rate is of gross error detection. The success rate of gross error detection by this method is improved further when remove-restore method is used to calculate normal height.

关 键 词:地球重力场模型 水准测量 高程转换 粗差检测 

分 类 号:P223[天文地球—大地测量学与测量工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象