检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘峰 罗再磊 沈同圣 赵德鑫 LIU Feng;LUO Zailei;SHEN Tongsheng;ZHAO Dexin(National Lnnovation Lnstitute of Defense Technology,Academy of Military Sciences,Beijing 100071,China)
机构地区:[1]军事科学院国防科技创新研究院,北京100071
出 处:《应用声学》2021年第4期518-524,共7页Journal of Applied Acoustics
基 金:国家自然科学基金项目(41906169)。
摘 要:水声目标识别一直是水声领域研究的重点问题之一,深度学习方法可以有效地解决目标识别问题,然而,水声样本的稀少限制了该方法的应用。该文提出一种基于数据增强的水声信号深度学习目标识别方法,该方法以Mel功率谱作为网络的输入特征,通过对原始信号在时域和时频域的拉伸和掩蔽等变换,实现数据扩展和增加泛化性能的目的,最后,利用改进的VGG网络模型实现目标分类。实验结果表明,该文方法得到的水下目标识别准确率(95.2%)要优于其他4种对比方法,证明了该文提出的网络模型和数据增强方法均有助于提高目标分类性能。Underwater acoustic target recognition has always been one of the key issues in the field of underwater acoustic research.Deep learning methods can effectively solve the problem of target recognition.However,the scarcity of underwater acoustic samples limits the application of this method.This paper proposes a deep learning target recognition method for underwater acoustic signals based on data enhancement.This method uses Mel power spectrum as the input feature of the network,and in order to increase the generalization performance of the method,data augmentation is achieved by stretching and masking the original signal in the time domain and time-frequency domain.Finally,using an improved VGG network model to achieve target classification.The experimental results show that the underwater target recognition accuracy(95.2%)obtained by this method is better than the other four comparison methods,which demonstrates that the network model and data enhancement method proposed in this paper can help to improve the target classification performance.
关 键 词:水声目标识别 卷积神经网络 数据增强 Mel功率谱
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.171.199