融合Retinex和离散小波奇异值分解的远距离目标图像清晰化  被引量:12

Remote object image enhancement of fusion Retinex and discrete wavelet singular value decomposition

在线阅读下载全文

作  者:徐兴贵 杨润华 冉兵 樊香所 XU Xinggui;YANG Runhua;RAN Bing;FAN Xiangsuo(School of Information,Yunnan University of Finance and Economics,Kunming 650221,China;Key Laboratory on Adaptive Optics,Institute of Optics and Electronics,Chinese Academy of Sciences,Chengdu 610209,China;Department of Intelligent Manufacturing,Yibin University,Yibin 644000,China)

机构地区:[1]云南财经大学信息学院,云南昆明650221 [2]中科院光电所自适应光学重点实验室,四川成都610209 [3]宜宾学院智能制造学部,四川宜宾644000

出  处:《应用光学》2021年第4期656-663,754,共9页Journal of Applied Optics

基  金:国家自然科学基金项目(60978049,10974202);广西科技基地和人才专项(桂科AD19245130)。

摘  要:针对远距离成像系统获取的低照度降质图像增强问题,提出了一种融合Retinex和离散小波奇异值分解的图像清晰化算法。该方法首先利用自适应全尺度Retinex(adaptive full-scale retinex,AFSR)“粗”提取照度分量和反射分量,然后通过离散小波变换将所提取的图像反射分量分解为4个频率子带并估计出低频子带图像的奇异值矩阵,最后应用逆小波变换“精”重建图像。实验结果表明:所提方法处理后的低照度降质图像视觉增强效果较好,在图像对比度、信息熵、平均梯度和边缘密度等客观评价指标方面优于其他经典算法。Aiming at the problem of low illumination degraded image enhancement obtained by remote imaging system,an image enhancement algorithm based on fusion Retinex and discrete wavelet singular value decomposition was proposed.In this method,the adaptive full-scale Retinex(AFSR)was used to coarsely extract the illumination and reflection components,and then the reflection components of the extracted image were decomposed into four frequency subbands by discrete wavelet transform,and the singular value matrix of the low-frequency subbands image was estimated.Finally,the inverse wavelet transform was adopted to precisely reconstruct the image.The experimental results show that the visual enhancement effect of the low illumination degraded image processed by the proposed method is better,which is superior to other classical algorithms in terms of objective evaluation indexes such as image contrast,information entropy,average gradient and edge density.

关 键 词:图像增强 小波变换 RETINEX 暗弱图像目标 

分 类 号:TN391[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象