基于残差局部幂的分数阶各项异性扩散低剂量CT降噪算法  被引量:2

Fractional-Order Anisotropic Diffusion Noise Reduction Algorithm for Low-Dose CT Based on Residual Local Power

在线阅读下载全文

作  者:焦枫媛 桂志国[1,2] 刘祎[1,2] 韩意[3] JIAO Fengyuan;GUI Zhiguo;LIU Yi;HAN Yi(Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, Taiyuan 030051, China;School of Information and Communication Engineering, North University of China, Taiyuan 030051, China;PLA Unit 63961, Beijing 100012, China)

机构地区:[1]中北大学生物医学成像与影像大数据山西省重点实验室,山西太原030051 [2]中北大学信息与通信工程学院,山西太原030051 [3]中国人民解放军63961部队,北京100012

出  处:《测试技术学报》2021年第4期288-293,共6页Journal of Test and Measurement Technology

基  金:国家重大科学仪器设备开发专项资助项目(2014YQ24044508);国家自然科学基金资助项目(61671413)。

摘  要:针对低剂量CT(Computed Tomography)图像中由于噪声影响而引起医学误诊的问题,提出了一种基于残差局部幂的分数阶各项异性扩散低剂量CT图像降噪算法.该方法将残差局部幂作为纹理检测算子加入分数阶各项异性扩散模型的扩散系数中,充分利用了残差图像中纹理、细节和边缘信息,有效增强了分数阶各项异性扩散算法的降噪性能.Shepp-Logan和实际腹部医疗数据仿真实验结果表明,该算法在抑制噪声和保持图像纹理、细节和边缘方面均优于传统的低剂量CT降噪算法.To solve the medical misdiagnosis caused by noise in low-dose computed tomography(CT)images,the fractional-order anisotropic diffusion noise reduction algorithm for low-dose CT images based on residual local power is proposed in this paper.In this method,the residual local power is added to the diffusion coefficient of the fractional-order anisotropic diffusion model as the texture detection operator.The full use of the texture,details and edge information in the residual image effectively enhances the denoising performance of the fractional-order anisotropic diffusion algorithm.Simulation results of Shepp-Logan and actual abdominal medical data show that the algorithm proposed in this paper is superior to traditional low-dose CT denoising algorithms in terms of noise suppression and image texture,details and edge preservation.

关 键 词:低剂量CT 残差局部幂 分数阶微分 各项异性扩散 纹理保持 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象