检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许子微 陈秀宏[1] XU Ziwei;CHEN Xiuhong(School of Digital Media,Jiangnan University,Wuxi 214122,China)
出 处:《智能系统学报》2021年第3期416-424,共9页CAAI Transactions on Intelligent Systems
基 金:江苏省研究生科研与实践创新计划项目(JNKY19_074).
摘 要:主成分分析(PCA)是一种无监督降维方法。然而现有的方法没有考虑样本的差异性,且不能联合地提取样本的重要信息,从而影响了方法的性能。针对以上问题,提出自步稀疏最优均值主成分分析方法。模型以L_(2,1)范数定义损失函数,同时用L_(2,1)范数约束投影矩阵作为正则化项,且将均值作为在迭代中优化的变量,这样可一致地选择重要特征,提高方法对异常值的鲁棒性;考虑到训练样本的差异性,利用自步学习机制实现训练样本由“简单”到“复杂”的学习过程,有效地降低异常值的影响。理论分析和实验结果表明,以上方法能更有效地降低异常值对分类精度的影响,提高分类精度。Principal component analysis(PCA)can be referred to as an unsupervised dimensionality reduction approach.However,the existing methods do not consider the difference of samples and cannot jointly extract important information of samples,thus affecting the performance of some methods.For the above problems,based on self-paced learning,we proposed a sparse optimal mean PCA algorithm.In our model,loss of function is defined by L_(2,1)norm,the projection matrix is regularized by L_(2,1)norm,and the mean value is taken as a variable to be optimized in the iteration.In this way,important features can be consistently selected,and the robustness of the method to outliers can be improved.Considering the difference in training samples,we utilized self-paced learning mechanism to complete the learning process of training samples from“simple”to“complex”so as to effectively reduce the influence of outliers.Theoretical analysis and the empirical study revealed that the proposed method could effectively reduce the influence of noise or outliers on the classification progress,thus improving the effect of the classification.
关 键 词:图像处理 主成分分析 无监督学习 数据降维 稀疏 最优均值 自步学习 人脸识别
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222