检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程建刚 毕凤荣[1] 张立鹏[2] 李鑫 杨晓[1] 汤代杰 CHENG Jiangang;BI Fengrong;ZHANG Lipeng;LI Xin;YANG Xiao;TANG Daijie(State Key Laboratory of Engines,Tianjin University,Tianjin 300072,China;Tianjin Internal Combustion Engine Research Institute,Tianjin 300072,China)
机构地区:[1]天津大学内燃机燃烧学国家重点实验室,天津300072 [2]天津内燃机研究所,天津300072
出 处:《内燃机工程》2021年第4期77-83,92,共8页Chinese Internal Combustion Engine Engineering
基 金:天津市自然科学基金项目(18JCYBJC20000)。
摘 要:为解决传统机械故障诊断方法需要人工提取特征的不足,提出一种基于多重注意力卷积神经网络双向门控循环单元(multiple attention-convolutional neural networks-bidirectional gated recurrent unit,MA-CNN-BiGRU)的端到端的故障诊断方法。首先将原始时域数据输入卷积神经网络(convolutional meural networks,CNN)进行初步特征提取并降维,然后将结果重组输入双向门控循环单元(bidirectional gated recurrent unit,BiGRU),可以有效地解决BiGRU对于过长序列数据处理困难的问题。采用美国凯斯西储大学开源轴承数据集进行训练,确定了最佳卷积层数和最佳样本长度约减比例分别为2和1/8。同时,通过在CNN和BiGRU中分别加入卷积注意力模块(convolutional block attention module,CBAM)和序列注意力模块(sequence attention module,SAM),进一步加强了模型对于关键信息的提取能力。最后实测柴油机故障振动信号试验表明:MA-CNN-BiGRU模型可以实现端到端的故障诊断,与变分模态分解(variational mode decomposition,VMD)核模糊C均值聚类算法(VMD-kernel fuzzy C-means clustering,VMD-KFCM)、VMD-反向传播神经网络(back propagation neural network,BPNN)和一维CNN等方法进行对比,MA-CNN-BiGRU模型的故障诊断性能更优。To solve the shortcomings of traditional mechanical fault diagnosis methods that requires manual extraction of features,an end-to-end fault diagnosis method based on multiple attention-convolutional neural networks-bidirectional gated recurrent unit(MA-CNN-BiGRU)was proposed.First,the original time domain data was input into convolutional neural networks(CNN)to extract feature and reduce dimensionality preliminary,and then the results were reorganized into bidirectional gated recurrent unit(BiGRU),which could effectively solve the problem that BiGRU was difficult to deal with long sequence data.The open-source bearing data set of Case Western Reserve University in the United States was used for training,and the optimal number of convolutional layers and the optimal sample length reduction ratio were determined to be 2 and 1/8 respectively.At the same time,by adding convolutional block attention module(CBAM)and sequence attention module(SAM)to CNN and BiGRU respectively,the model's ability to capture key information is further strengthened.Finally,the actual measurement results of the diesel engine fault vibration signal experiment show that the MA-CNN-BiGRU model can achieve end-to-end fault diagnosis,and compared with the variational mode decomposition-kernel fuzzy C-means clustering algorithm(VMD-KFCM),VMD-BP neural networks(VMD-BPNN)and one-dimensional CNN,the fault diagnosis performance of the MA-CNN-BiGRU is better.
关 键 词:注意力 故障诊断 多重注意力卷积神经网络双向门控循环单元(MA-CNN-BiGRU) 端到端
分 类 号:TH17[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.204