检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郄欣 齐雁冰[1] 刘姣姣[1] 王珂 陈敏辉 QIE Xin;QI Yanbing;LIU Jiaojiao;WANG Ke;CHEN Minhui(College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China)
机构地区:[1]西北农林科技大学资源环境学院,陕西杨凌712100
出 处:《干旱地区农业研究》2021年第4期109-116,124,共9页Agricultural Research in the Arid Areas
基 金:国家自然科学基金(41877007)。
摘 要:基于高光谱数据的土壤有机质反演是土壤遥感及精准农业的重要研究内容,然而不同的光谱处理及建模方法使得模型的估算能力及精度差异明显,限制了模型之间的通用性。为了构建陕西省土壤有机质含量估算的最优模型,以陕西省9种主要土壤类型的216个土样的光谱反射曲线和土壤有机质含量为数据基础,将光谱反射曲线进行一阶微分d(R)、倒数对数log(1/R)、倒数对数一阶微分d[log(1/R)]和包络线去除N(R)4种变换,结合一元线性回归(SLR)、偏最小二乘回归(PLSR)和支持向量机回归(SVR)3种建模方法构建了不同的土壤有机质含量估算模型。结果显示:不同类型土壤的反射光谱曲线总体态势基本一致,吸收特征位置基本相同,且土壤有机质含量与光谱反射率呈负相关态势;基于d[log(1/R)]光谱变换构建的SVR估算模型精度最高,建模集和验证集的判断系数(R2)分别为0.9210、0.8874,验证均方根误差(RMSE)为2.18,相对分析误差(RPD)达到2.8751,是估算陕西省土壤有机质含量的最优模型,PLSR次之,SLR最差。Soil organic matter estimation based on hyperspectral data is an important research topic of soil remote sensing and precision agriculture.However,different spectral processing and modeling methods make the estimation ability and accuracy of models vary significantly,which limits the universality of models.In order to establish the optimal model of soil organic matter estimation in Shaanxi Province,based on the spectral reflectance curve and soil organic matter content of 216 soil samples of 9 main soil types in Shaanxi Province,the spectral reflectance curve was transformed into four transformations:first order differential d(R),reciprocal logarithm log(1/R),reciprocal logarithm first order differential d[log(1/R)]and envelope line removal N(R).One variable linear regression(SLR),partial least square regression(PLSR)and support vector machine regression(SVR)were used to establish different models for estimating soil organic matter content.The results showed that the reflectance spectra curves and the absorption characteristic positions of different types of soil were basically the same,with the organic matter content and spectral reflectance showing a negative correlation trend.The accuracy of the nonlinear organic matter content estimation model based on SVR was the highest,PLSR was the second,SLR was the worst.Among them,the judgment coefficient R2 of SVR model and validation model based on d[log(1/R)]spectrum was the best,which were 0.9210 and 0.8874 respectively,the validation root mean square error RMSE was only 2.18,and RPD reached 2.8751.Therefore,SVR was the best model for estimating soil organic matter content.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.66