Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy  

在线阅读下载全文

作  者:ZHAO Hai-Qiong ZHU Zuo-Nong ZHANG Jing-Li 赵海琼;朱佐农;张京丽(Department of Mathematics,Shanghai Jiao Tong University,800 Dongchuan Road,Shanghai 200240;Science and Literature Section,Shijiazhuang Mechanized Infantry Academy,Shijiazhuang 050083)

机构地区:[1]Department of Mathematics,Shanghai Jiao Tong University,800 Dongchuan Road,Shanghai 200240 [2]Science and Literature Section,Shijiazhuang Mechanized Infantry Academy,Shijiazhuang 050083

出  处:《Chinese Physics Letters》2011年第5期4-7,共4页中国物理快报(英文版)

基  金:Supported by the National Natural Science Foundation of China under Grant No 10971136;also in part by the Ministry of Education and Science of Spain under Contract No MTM2009-12670.

摘  要:Coupled Korteweg-de Vries(KdV)systems have many important physical applications.By considering a 4×4spectral problem,we derive a discrete coupled KdV-type equation hierarchy.Our hierarchy includes the coupled Volterra system proposed by Lou et al.(e-print arXiv:0711.0420)as the first member which is a discrete version of the coupled KdV equation.We also investigate the integrability in the Liouville sense and the multi-Hamiltonian structures for the obtained hierarchy.

关 键 词:EQUATION HAMILTONIAN LIOUVILLE 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象