检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张进[1] 廖一鹏[1] 陈诗媛 王卫星[1] Zhang Jin;Liao Yipeng;Chen Shiyuan;Wang Weixing(College of Physics and Information Engineering,Fuzhou University,Fuzhou,Fujian350108,China)
机构地区:[1]福州大学物理与信息工程学院,福建福州350108
出 处:《激光与光电子学进展》2021年第12期401-410,共10页Laser & Optoelectronics Progress
基 金:国家自然科学基金(61471124,61601126);福建省自然科学基金(2019J01224)。
摘 要:针对浮选加药状态在线检测困难、识别效率低和主观性强等问题,提出了一种基于多尺度卷积神经网络(CNN)特征及行列自编码核极限学习机(RAE-KELM)的浮选加药状态识别方法。首先,对浮选泡沫图像进行非下采样Shearlet多尺度分解,用CNN提取每个尺度图像的深度特征并进行多尺度特征融合;然后,构建RAEKELM,将用量子计算改进的细菌觅食算法用于RAE-KELM的参数优化;最后,通过自建数据集训练得到最优的RAE-KELM模型,实现了浮选加药状态的自适应识别。实验结果表明,本方法的识别准确率可达到98.88%;且本方法减少了人工干预,有利于提高生产效率。To address the problems associated with online detection,low recognition efficiency,and strong subjectivity of the flotation dosing state,this paper proposes a flotation dosing state recognition method based on multiscale convolutional neural network(CNN)features and ranks automatic encoder kernel extreme learning machine(RAE-KELM).First,the flotation foam image is subjected to non-subsampled Shearlet multiscale decomposition,and the CNN is used to extract the depth features of each scale image and perform multiscale feature fusion.Then,the RAE-KELM is constructed,and an improved bacterial foraging algorithm based on quantum computing is used to optimize the RAE-KELM parameters.Finally,the optimal RAE-KELM model is obtained through self-built dataset training to realize the adaptive recognition of the flotation dosing state.The experimental results demonstrate that the recognition accuracy of the method can reach 98.88%.Additionally,the method reduces manual interventions,which can improve production efficiency.
关 键 词:图像处理 卷积神经网络 非下采样Shearlet变换 行列自编码核极限学习机 量子细菌觅食算法
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.139.55.72